首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cystic fibrosis (CF) is a genetic disease with many airway pathological features, including aberrant epithelial sodium channel (ENaC) function, persistent Pseudomonas aeruginosa (PA) infection and neutrophil-dominant inflammation. PA infection in CF airways is difficult to treat due to antibiotic resistance and other factors. Recently, α1-antitrypsin (A1AT) have been shown to be effective to reduce CF airway PA infection. However, there is a dearth of studies about the mechanisms underlying A1AT’s therapeutic effects. The goal of our study is to provide an animal model of A1AT therapy in CF lungs. ENaC transgenic mice with PA infection were used as a CF-like model. Mice were intratracheally treated with PA or saline (control) in a fibrin plug. Two hours after PA infection, aerosolized A1AT were delivered to mouse lungs once daily. At day 1 and day 3 post PA infection, lung inflammation, PA load as well as host defence protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) were measured. At day 1 post PA infection when A1AT was delivered once to ENaC transgenic mouse lungs, A1AT did not reduce lung inflammation (e.g., neutrophils) and PA load. However, at day 3 post PA infection when ENaC transgenic mice received three repeated A1AT treatments, a significant decrease in airspace inflammation and PA load was observed. Although A1AT prevented the loss of SPLUNC1 in bronchoalveolar lavage fluid of PA-infected wild-type mice, it did not restore SPLUNC1 levels in ENaC transgenic mice. Our current study has provided a valid and quick A1AT therapeutic model in CF-like lungs that may serve as a platform for future mechanistic studies about how A1AT exerts beneficial effects in human CF patients.  相似文献   

2.

Introduction

Increasing evidence has shown that immune surveillance is compromised in a tumor-promoting microenvironment for patients with non-small cell lung cancer (NSCLC), and can be restored by appropriate chemotherapy.

Methods

To test this hypothesis, we analyzed microarray gene expression profiles of peripheral blood mononuclear cells from 30 patients with newly-diagnosed advanced stage NSCLC, and 20 age-, sex-, and co-morbidity-matched healthy controls. All the patients received a median of four courses of chemotherapy with cisplatin and gemcitabine for a 28-day cycle as first line treatment.

Results

Sixty-nine differentially expressed genes between the patients and controls, and 59 differentially expressed genes before and after chemotherapy were identified. The IL4 pathway was significantly enriched in both tumor progression and chemotherapy signatures. CXCR4 and IL2RG were down-regulated, while DOK2 and S100A15 were up-regulated in the patients, and expressions of all four genes were partially or totally reversed after chemotherapy. Real-time quantitative RT-PCR for the four up-regulated (S100A15, DOK2) and down-regulated (TLR7, TOP1MT) genes in the patients, and the six up-regulated (TLR7, CRISP3, TOP1MT) and down-regulated (S100A15, DOK2, IL2RG) genes after chemotherapy confirmed the validity of the microarray results. Further immunohistochemical analysis of the paraffin-embedded lung cancer tissues identified strong S100A15 nuclear staining not only in stage IV NSCLC as compared to stage IIIB NSCLC (p = 0.005), but also in patients with stable or progressive disease as compared to those with a partial response (p = 0.032). A high percentage of S100A15 nuclear stained cells (HR 1.028, p = 0.01) was the only independent factor associated with three-year overall mortality.

Conclusions

Our results suggest a potential role of the IL4 pathway in immune surveillance of advanced stage NSCLC, and immune potentiation of combination chemotherapy. S100A15 may serve as a potential biomarker for tumor staging, and a predictor of poor prognosis in NSCLC.  相似文献   

3.

Background

Pulmonary exacerbations (PEx), frequently associated with airway infection and inflammation, are the leading cause of morbidity in cystic fibrosis (CF). Molecular microbiologic approaches detect complex microbiota from CF airway samples taken during PEx. The relationship between airway microbiota, inflammation, and lung function during CF PEx is not well understood.

Objective

To determine the relationships between airway microbiota, inflammation, and lung function in CF subjects treated for PEx.

Methods

Expectorated sputum and blood were collected and lung function testing performed in CF subjects during early (0–3d.) and late treatment (>7d.) for PEx. Sputum was analyzed by culture, pyrosequencing of 16S rRNA amplicons, and quantitative PCR for total and specific bacteria. Sputum IL-8 and neutrophil elastase (NE); and circulating C-reactive protein (CRP) were measured.

Results

Thirty-seven sputum samples were collected from 21 CF subjects. At early treatment, lower diversity was associated with high relative abundance (RA) of Pseudomonas (r = −0.67, p<0.001), decreased FEV1% predicted (r = 0.49, p = 0.03) and increased CRP (r = −0.58, p = 0.01). In contrast to Pseudomonas, obligate and facultative anaerobic genera were associated with less inflammation and higher FEV1. With treatment, Pseudomonas RA and P. aeruginosa by qPCR decreased while anaerobic genera showed marked variability in response. Change in RA of Prevotella was associated with more variability in FEV1 response to treatment than Pseudomonas or Staphylococcus.

Conclusions

Anaerobes identified from sputum by sequencing are associated with less inflammation and higher lung function compared to Pseudomonas at early exacerbation. CF PEx treatment results in variable changes of anaerobic genera suggesting the need for larger studies particularly of patients without traditional CF pathogens.  相似文献   

4.
5.
Cystic fibrosis (CF) is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function. Taken together, these results indicate that the adult CF lung microbiome is largely stable through periods of exacerbation and antibiotic treatment and that short-term compositional changes in the airway microbiota do not account for CF pulmonary exacerbations.  相似文献   

6.
7.
Cystic fibrosis (CF) lung disease is characterized by infection with Pseudomonas aeruginosa and a sustained accumulation of neutrophils. In this study, we analyzed 1) the expression of MyD88-dependent TLRs on circulating and airway neutrophils in P. aeruginosa-infected CF patients, P. aeruginosa-infected non-CF bronchiectasis patients, and noninfected healthy control subjects and 2) studied the regulation of TLR expression and functionality on neutrophils in vitro. TLR2, TLR4, TLR5, and TLR9 expression was increased on airway neutrophils compared with circulating neutrophils in CF and bronchiectasis patients. On airway neutrophils, TLR5 was the only TLR that was significantly higher expressed in CF patients compared with bronchiectasis patients and healthy controls. Studies using confocal microscopy and flow cytometry revealed that TLR5 was stored intracellularly in neutrophils and was mobilized to the cell surface in a protein synthesis-independent manner through protein kinase C activation or after stimulation with TLR ligands and cytokines characteristic of the CF airway microenvironment. The most potent stimulator of TLR5 expression was the bacterial lipoprotein Pam(3)CSK(4). Ab-blocking experiments revealed that the effect of Pam(3)CSK(4) was mediated through cooperation of TLR1 and TLR2 signaling. TLR5 activation enhanced the phagocytic capacity and the respiratory burst activity of neutrophils, which was mediated, at least partially, via a stimulation of IL-8 production and CXCR1 signaling. This study demonstrates a novel mechanism of TLR regulation in neutrophils and suggests a critical role for TLR5 in neutrophil-P. aeruginosa interactions in CF lung disease.  相似文献   

8.
Inflammation plays a critical role in lung disease progression in cystic fibrosis (CF). This inflammatory process is dominated by a neutrophil influx in the airways. To determine whether the accumulation of neutrophils in the airways of CF patients is associated with an altered function, we analyzed the capacity of neutrophils isolated from the lung compartment and the blood to release the major neutrophil pro- and anti-inflammatory cytokines IL-8 and IL-1-receptor antagonist (ra) spontaneously and in the presence of LPS. Comparison of cytokine production by blood neutrophils from CF patients and from control subjects showed significantly increased IL-8 and decreased IL-1ra release by CF neutrophils. Comparison of cytokine production by airway and blood neutrophils from CF patients also documented distinct profiles: the spontaneous release of IL-8 and IL-1ra by airway neutrophils was significantly higher than that from blood neutrophils. Culture in the presence of LPS failed to further enhance cytokine production. Analysis of the effect of dexamethasone confirmed the difference in the responsiveness of lung and blood neutrophils in CF. Used at a concentration effective in reducing IL-8 production by blood neutrophils, dexamethasone (10(-6) M) was unable to repress secretion of IL-8 by airway neutrophils. In addition, comparison of cytokine production by airway neutrophils from children with CF and children with dyskinetic cilia syndrome also documented distinct profiles of secretion. These results are consistent with a dysregulated cytokine production by lung and blood neutrophils in CF. They provide support to the hypothesis that not only the CF genotype but also the local environment may modify the functional properties of the neutrophils.  相似文献   

9.

Background

Lungs of cystic fibrosis (CF) patients are chronically infected with Pseudomonas aeruginosa. Increased airway constriction has been reported in CF patients but underplaying mechanisms have not been elucidated. Aim: to examine the effect of P. aeruginosa LPS on airway constriction in CF mice and the implication in this process of cytosolic phospholipase A2α (cPLA2α), an enzyme involved in arachidonic acid (AA) release.

Methods

Mice were instilled intra-nasally with LPS. Airway constriction was assessed using barometric plethysmograph. MIP-2, prostaglandin E2 (PGE2), leukotrienes and AA concentrations were measured in BALF using standard kits and gas chromatography.

Results

LPS induced enhanced airway constriction and AA release in BALF of CF compared to littermate mice. This was accompanied by increased levels of PGE2, but not those of leukotrienes. However, airway neutrophil influx and MIP-2 production remained similar in both mouse strains. The cPLA2α inhibitor arachidonyl trifluoro-methyl-ketone (ATK), but not aspirin which inhibit PGE2 synthesis, reduced LPS-induced airway constriction. LPS induced lower airway constriction and PGE2 production in cPLA2α -/- mice compared to corresponding littermates. Neither aspirin nor ATK interfered with LPS-induced airway neutrophil influx or MIP-2 production.

Conclusions

CF mice develop enhanced airway constriction through a cPLA2α-dependent mechanism. Airway inflammation is dissociated from airway constriction in this model. cPLA2α may represent a suitable target for therapeutic intervention in CF. Attenuation of airway constriction by cPLA2α inhibitors may help to ameliorate the clinical status of CF patients.  相似文献   

10.
We compared gene expression in blood neutrophils (polymorphonuclear leukocytes, or PMNs) collected from healthy subjects with those of cystic fibrosis (CF) patients devoid of bacterial colonization. Macroarray analysis of 1050 genes revealed upregulation of 62 genes and downregulation expression of 27 genes in CF blood PMNs. Among upregulated genes were those coding for vitronectin, some chemokines (particularly CCL17 and CCL18), some interleukin (IL) receptors (IL-3, IL-8, IL-10, IL-12), all three colony-stimulating factors (G-, M-, GM-CSF), numerous genes coding for molecules involved in signal transduction, and a few genes under the control of gamma-interferon. In contrast, none of the genes coding for adhesion molecules were modulated. The upregulation of six genes in CF PMNs (coding for thrombospondin-1, G-CSF, CXCL10, CCL17, IKKvarepsilon, IL-10Ra) was further confirmed by qPCR. In addition, the increased presence of G-CSF, CCL17, and CXCL10 was confirmed by ELISA in supernatants of neutrophils from CF patients. When comparison was performed between blood and airway PMNs of CF patients, there was a limited difference in terms of gene expression. Only the mRNA expression of amphiregulin and tumor necrosis factor (TNF) receptor p55 were significantly higher in airway PMNs. The presence of amphiregulin was confirmed by ELISA in the sputum of CF patients, suggesting for the first time a role of amphiregulin in cystic fibrosis. Altogether, this study clearly demonstrates that blood PMNs from CF patients display a profound modification of gene expression profile associated with the disease, suggesting a state of activation of these cells.  相似文献   

11.
The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (< or = 10 microM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca(2+) ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca(2+) ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.  相似文献   

12.

Background

In metazoans, Piwi-related Argonaute proteins play important roles in maintaining germline integrity and fertility and have been linked to a class of germline-enriched small RNAs termed piRNAs. Caenorhabditis elegans encodes two Piwi family proteins called PRG-1 and PRG-2, and PRG-1 interacts with the C. elegans piRNAs (21U-RNAs). Previous studies found that mutation of prg-1 causes a marked reduction in the expression of 21U-RNAs, temperature-sensitive defects in fertility and other phenotypic defects.

Results

In this study, we wanted to systematically demonstrate the function of PRG-1 in the regulation of small RNAs and their targets. By analyzing small RNAs and mRNAs with and without a mutation in prg-1 during C. elegans development, we demonstrated that (1) mutation of prg-1 leads to a decrease in the expression of 21U-RNAs, and causes 35 ~ 40% of miRNAs to be down-regulated; (2) in C. elegans, approximately 3% (6% in L4) of protein-coding genes are differentially expressed after mutating prg-1, and 60 ~ 70% of these substantially altered protein-coding genes are up-regulated; (3) the target genes of the down-regulated miRNAs and the candidate target genes of the down-regulated 21U-RNAs are enriched in the up-regulated protein-coding genes; and (4) PRG-1 regulates protein-coding genes by down-regulating small RNAs (miRNAs and 21U-RNAs) that target genes that participate in the development of C. elegans.

Conclusions

In prg-1-mutated C. elegans, the expression of miRNAs and 21U-RNAs was reduced, and the protein-coding targets, which were associated with the development of C. elegans, were up-regulated. This may be the mechanism underlying PRG-1 function.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-321) contains supplementary material, which is available to authorized users.  相似文献   

13.
Antibiotic therapy in the cystic fibrosis (CF) mouse model has been shown to result in reduced bacterial load of the intestine and significant body mass gain. The effect was suggested to be linked to the improvement of intestinal digestion and absorption. Therefore, we aimed to assess the influence of routinely applied antibiotic therapy in CF patients on fat assimilation. Twenty-four CF patients aged 6 to 30 years entered the study. Inclusion criteria comprised confirmed exocrine pancreatic insufficiency and bronchopulmonary exacerbation demanding antibiotic therapy. Exclusion criteria comprised: antibiotic therapy six weeks prior to the test, liver cirrhosis, diabetes mellitus, oxygen dependency, the use of systemic corticosteroids. In all enrolled CF subjects, (13)C-labelled mixed triglyceride breath test ((13)C MTG-BT) was performed to assess lipid digestion and absorption, before and after antibiotic therapy. Sixteen subjects were treated intravenously with ceftazidime and amikacin, eight patients orally with ciprofloxacin. Cumulative percentage dose recovery (CPDR) was considered to reflect digestion and absorption of lipids. The values are expressed as means (medians). The values of CPDR before and after antibiotic therapy did not differ in the whole studied group [4.6(3.3) % vs. 5.7(5.3) %, p = 0.100] as well as in the subgroup receiving them intravenously [4.6(3.2) % vs. 5.7(5.3) %, p = 0.327] or in that with oral drug administration [4.6(3.4) % vs. 5.7(5.4) %, p = 0.167]. In conclusion, antibiotic therapy applied routinely in the course of pulmonary exacerbation in CF patients does not seem to result in an improvement of fat digestion and absorption.  相似文献   

14.
15.
16.
Pancreatic cancer is a uniformly lethal disease that can be difficult to diagnose at its early stage. Thus, our present study aimed to explore the underlying mechanism and identify new targets for this disease. The data GSE16515, including 36 tumor and 16 normal samples were available from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened out using Robust Multichip Averaging and LIMMA package. Moreover, gene ontology and pathway enrichment analyses were performed to DEGs. Followed with protein–protein interaction (PPI) network construction by STRING and Cytoscape, module analysis was conducted using ClusterONE. Finally, based on PubMed, text mining about these DEGs was carried out. Total 274 up-regulated and 93 down-regulated genes were identified as the common DEGs and these genes were discovered significantly enriched in cell adhesion and extracellular region terms, as well as ECM-receptor interaction pathway. In addition, five modules were screened out from the up-regulated PPI network with none in down-regulated network. Finally, the up-regulated genes, including MIA, MET and CEACAMS, and down-regulated genes, such as FGF, INS and LAPP, had the most references in text mining analysis. Our findings demonstrate that the up- and down-regulated genes play important roles in pancreatic cancer development and might be new targets for the therapy.  相似文献   

17.
18.
19.

Background

Airway microbiota composition has been clearly correlated with many pulmonary diseases, and notably with cystic fibrosis (CF), an autosomal genetic disorder caused by mutation in the CF transmembrane conductance regulator (CFTR). Recently, a new molecule, ivacaftor, has been shown to re-establish the functionality of the G551D-mutated CFTR, allowing significant improvement in lung function.

Objective and Methods

The purpose of this study was to follow the evolution of the airway microbiota in CF patients treated with ivacaftor, using quantitative PCR and pyrosequencing of 16S rRNA amplicons, in order to identify quantitative and qualitative changes in bacterial communities. Three G551D children were followed up longitudinally over a mean period of more than one year covering several months before and after initiation of ivacaftor treatment.

Results

129 operational taxonomy units (OTUs), representing 64 genera, were identified. There was no significant difference in total bacterial load before and after treatment. Comparison of global community composition found no significant changes in microbiota. Two OTUs, however, showed contrasting dynamics: after initiation of ivacaftor, the relative abundance of the anaerobe Porphyromonas 1 increased (p<0.01) and that of Streptococcus 1 (S. mitis group) decreased (p<0.05), possibly in relation to the anti-Gram-positive properties of ivacaftor. The anaerobe Prevotella 2 correlated positively with the pulmonary function test FEV-1 (r=0.73, p<0.05). The study confirmed the presumed positive role of anaerobes in lung function.

Conclusion

Several airway microbiota components, notably anaerobes (obligate or facultative anaerobes), could be valuable biomarkers of lung function improvement under ivacaftor, and could shed light on the pathophysiology of lung disease in CF patients.  相似文献   

20.
Regulated exocytosis of dense core secretory granules releases biologically active proteins in a stimulus-dependent fashion. The packaging of the cargo within newly forming granules involves a transition: soluble polypeptides condense to form water-insoluble aggregates that constitute the granule cores. Following exocytosis, the cores generally disassemble to diffuse in the cell environment. The ciliates Tetrahymena thermophila and Paramecium tetraurelia have been advanced as genetically manipulatable systems for studying exocytosis via dense core granules. However, all of the known granule proteins in these organisms condense to form the architectural units of lattices that are insoluble both before and after exocytosis. Using an approach designed to detect new granule proteins, we have now identified Igr1p (induced during granule regeneration). By structural criteria, it is unrelated to the previously characterized lattice-forming proteins. It is distinct in that it is capable of dissociating from the insoluble lattice following secretion and therefore represents the first diffusible protein identified in ciliate granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号