首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper is devoted to an analysis of the pattern of zonal distribution of mesofaunal arthropods, birds, and vascular plants in the area from northern taiga forests to arctic tunrdas of the Yamal Peninsula by the gradient of summer air temperatures. The latitudinal dynamics of northern ecosystems determines differences in the number of plant species that have a direct effect on the species richness and abundance of invertebrates and an indirect one through invertebrates on the same indices of birds. Breaks in continuity marking the natural boundaries where the components of arctic communities become boreal have been found in the changes of species diversity.  相似文献   

3.
Although many taxa show a latitudinal gradient in richness, the relationship between latitude and species richness is often asymmetrical between the northern and southern hemispheres. Here we examine the latitudinal pattern of species richness across 1003 local ant assemblages. We find latitudinal asymmetry, with southern hemisphere sites being more diverse than northern hemisphere sites. Most of this asymmetry could be explained statistically by differences in contemporary climate. Local ant species richness was positively associated with temperature, but negatively (although weakly) associated with temperature range and precipitation. After contemporary climate was accounted for, a modest difference in diversity between hemispheres persisted, suggesting that factors other than contemporary climate contributed to the hemispherical asymmetry. The most parsimonious explanation for this remaining asymmetry is that greater climate change since the Eocene in the northern than in the southern hemisphere has led to more extinctions in the northern hemisphere with consequent effects on local ant species richness.  相似文献   

4.
Information about the global distribution of aquatic hyphomycetes is scarce, despite the primary importance of these fungi in stream ecosystem functioning. In particular, the relationship between their diversity and latitude remains unclear, due to a lack of coordinated surveys across broad latitudinal ranges. This study is a first report on latitudinal patterns of aquatic hyphomycete diversity associated with native leaf-litter species in five streams located along a gradient extending from the subarctic to the tropics. Exposure of leaf litter in mesh bags of three different mesh sizes facilitated assessing the effects of including or excluding different size-classes of litter-consuming invertebrates. Aquatic hyphomycete evenness was notably constant across all sites, whereas species richness and diversity, expressed as the Hill number, reached a maximum at mid-latitudes (Mediterranean and temperate streams). These latitudinal patterns were consistent across litter species, despite a notable influence of litter identity on fungal communities at the local scale. As a result, the bell-shaped distribution of species richness and Hill diversity deviated markedly from the latitudinal patterns of most other groups of organisms. Differences in the body-size distribution of invertebrate communities colonizing the leaves had no effect on aquatic hyphomycete species richness, Hill diversity or evenness, but invertebrates could still influence fungal communities by depleting litter, an effect that was not captured by the design of our experiment.  相似文献   

5.
物种多样性格局同时受到多个因子和过程的综合作用。以往对水生植物多样性格局形成机制的研究主要集中在几何限制、水分能量状况或随机过程等少数因子方面。该研究通过野外调查, 研究柴达木盆地水生植物沿经度和纬度梯度的分布格局, 并验证了对物种多样性分布格局影响较大的水分-能量假说、栖息地异质性假说、空间自相关、物种-面积效应和中域效应这5种假说。主要结果表明柴达木盆地水生植物多样性沿经度和纬度梯度均呈现“∩”形单峰格局。回归分析显示中域效应和物种-面积效应显著影响柴达木盆地水生植物多样性格局, 而水分-能量、栖息地异质性假说及空间自相关对该区域水生植物多样性格局影响较小。方差分解显示中域效应对柴达木盆地水生植物多样性经度和纬度格局的单独解释率分别为68.41%和66.91%, 该结果表明柴达木盆地水生植物多样性格局主要受几何限制和扩散限制影响。结合以往研究结果, 该研究进一步证实几何限制和随机效应可能是影响中国干旱区水生植物多样性分布格局的重要自然因素。  相似文献   

6.
毛茛科是真双子叶植物的基部类群之一, 包含多种药用植物, 具有较高的保护价值, 但关于毛茛科物种多样性和谱系多样性大尺度格局及其影响因子的研究还比较匮乏, 特别是以较高分辨率分布数据为基础的物种多样性格局研究尚未见报道。本文旨在: (1)建立欧亚大陆东部毛茛科植物分布数据库, 估算不同生活型物种多样性和谱系多样性格局, 并探究格局的形成机制。(2)分析毛茛科物种多样性和谱系多样性的相关关系, 确定多样性热点地区, 为毛茛科保护规划提供依据。根据中国、哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦、乌兹别克斯坦、蒙古和俄罗斯等国家的区域和地方植物志, 建立了“欧亚大陆东部地区毛茛科物种分布数据库”。该数据库包含了欧亚大陆东部地区1,688种毛茛科物种的分布数据, 空间分辨率为100 km × 100 km。在此基础上, 估算了毛茛科全部及不同生活型的物种多样性和谱系多样性格局, 并利用广义线性模型和等级方差分离方法分析了毛茛科物种和谱系多样性格局与环境因子的关系。最后比较了物种多样性和谱系多样性的相关关系, 确定了毛茛科的古热点地区。结果显示: (1)欧亚大陆东部毛茛科植物物种和谱系多样性均呈明显的纬度格局, 且在山区具有较高的多样性。(2)毛茛科植物物种和谱系多样性受现代气候、地形异质性和末次冰期以来的气候变化的共同影响, 但不同影响因子的相对贡献率在物种和谱系多样性及不同生活型之间差异显著。(3)中高纬度地区的谱系多样性高于给定物种数的预期, 是毛茛科的古热点地区, 在毛茛科保护规划中应受到重视。  相似文献   

7.
This paper aimed to explore the division of the southern and northern Hengduan Mountains based on gradients in species similarity and richness, and to analyze species richness in each sub-region. The Hengduan Mountain region was divided into nine latitudinal belts using one degree of latitude to define the belt after which distribution of seed plants within each latitudinal belt was recorded. Latitudinal patterns of species similarity were measured using the Jaccard similarity index for each pair of adjacent latitudinal belts. Non-metric multidimentional scaling (NMDS) was also used to analyze the similarity in species composition among the nine latitudinal belts. The latitudinal pattern of species similarity and the NMDS ordination both showed a great change in species composition across the 29°N latitudinal line, essentially dividing the Hengduan Mountain region into southern and northern sub-regions. Species richness, shown by the c-value of the species–area power function, and species–area ratio along a latitudinal gradient both showed a sharp decrease across the latitudinal belt from 29°0' to 29°59'N. The southern sub-region occupied 40% of the total area of the Hengduan Mountain region, but contained more than 80% of all the seed plants in the region. The higher species richness and endemism in the southern sub-region showed it to be the core of the Hengduan biodiversity hotspot, a result not unexpected because of the greater extremes of topography and wider diversity of habitats in the southern portion.  相似文献   

8.
气候假说对内蒙古草原群落物种多样性格局的解释   总被引:1,自引:0,他引:1  
物种丰富度的地理格局是宏观生态学和生物地理学的中心议题之一。本文基于内蒙古草原192个野外样地的调查数据, 结合各样地年平均气温、年降水量等9个气候因子, 探讨内蒙古草原物种丰富度格局及其主导因素, 以确定气候假说在该区的适用性。结果表明: (1)内蒙古草原物种丰富度经度格局显著, 呈现沿经度升高而增加的趋势, 同时由于经纬度的共线性, 也呈现出沿纬度升高而增加的趋势。(2)方差分解显示, 能量单独解释率为2.7%, 水分单独解释率为11.4%, 水分和能量共同解释率为46.3%, 未解释部分为39.6%, 可见能量与水分的共同作用在物种丰富度格局形成中占主导地位, 支持水热动态假说。这说明水热动态假说适用于解释内蒙古草原物种丰富度 格局。  相似文献   

9.
Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness patterns. A corollary hypothesis of water-energy dynamics theory is that the influence of water decreases and the influence of energy increases with absolute latitude. We report the first use of geographically weighted regression for testing this hypothesis on a continuous species richness gradient that is entirely located within the tropics and subtropics. The dataset was divided into northern and southern hemispheric portions to test whether predictor shifts are more pronounced in the less oceanic northern hemisphere. American palms (Arecaceae, n = 547 spp.), whose species richness and distributions are known to respond strongly to water and energy, were used as a model group. The ability of water and energy to explain palm species richness was quantified locally at different spatial scales and regressed on latitude. Clear latitudinal trends in agreement with water-energy dynamics theory were found, but the results did not differ qualitatively between hemispheres. Strong inherent spatial autocorrelation in local modeling results and collinearity of water and energy variables were identified as important methodological challenges. We overcame these problems by using simultaneous autoregressive models and variation partitioning. Our results show that the ability of water and energy to explain species richness changes not only across large climatic gradients spanning tropical to temperate or arctic zones but also within megathermal climates, at least for strictly tropical taxa such as palms. This finding suggests that the predictor shifts are related to gradual latitudinal changes in ambient energy (related to solar flux input) rather than to abrupt transitions at specific latitudes, such as the occurrence of frost.  相似文献   

10.
The most ubiquitous and well recognized diversity pattern at large spatial scales is the latitudinal increase in species richness near the equator and decline towards the poles. Although several exceptions to this pattern have been documented, shallow water mollusks, the most specious group of marine invertebrates, are the epitome of the monotonic decline in species diversity toward higher latitudes along the Pacific and Atlantic coasts of North America. Here we analyze the geographic diversity of 629 mollusk species along the Pacific South American shelf. Our analyses are based on the most complete database of invertebrates assembled for this region of the world, consisting of latitudinal ranges of over 95% of all described mollusks between 10° and 55°S. Along this coast, mollusk diversity did not follow the typical latitudinal trend. The number of species remained constant and relatively low at intermediate latitudes and sharply increased toward higher latitudes, south of 42°S. This trend was explained by changes in shelf area, but not by sea surface temperature, unlike the pattern documented for Northern Hemisphere mollusks. Direct sampling of soft bottom communities along the gradient suggests that regional trends in species richness are produced by increased alpha diversity, and not only by artifacts produced by the increase in sampling area. We hypothesize that increased shelf area south of 42°S, geographic isolation produced by divergence of major oceanic currents, and the existence of refugia during glaciations, enabled species diversification. Radiation could have been limited by narrow continental shelves between 10°–42°. Asymmetries in latitudinal diversity trends between hemispheres show that there is not a single general factor determining large-scale diversity patterns.  相似文献   

11.
12.
The increase in species richness from the poles to the tropics, referred to as the latitudinal diversity gradient, is one of the most ubiquitous biodiversity patterns in the natural world. Although understanding how rates of speciation and extinction vary with latitude is central to explaining this pattern, such analyses have been impeded by the difficulty of estimating diversification rates associated with specific geographic locations. Here, we use a powerful phylogenetic approach and a nearly complete phylogeny of mammals to estimate speciation, extinction, and dispersal rates associated with the tropical and temperate biomes. Overall, speciation rates are higher, and extinction rates lower, in the tropics than in temperate regions. The diversity of the eight most species-rich mammalian orders (covering 92% of all mammals) peaks in the tropics, except that of the Lagomorpha (hares, rabbits, and pikas) reaching a maxima in northern-temperate regions. Latitudinal patterns in diversification rates are strikingly consistent with these diversity patterns, with peaks in species richness associated with low extinction rates (Primates and Lagomorpha), high speciation rates (Diprotodontia, Artiodactyla, and Soricomorpha), or both (Chiroptera and Rodentia). Rates of range expansion were typically higher from the tropics to the temperate regions than in the other direction, supporting the “out of the tropics” hypothesis whereby species originate in the tropics and disperse into higher latitudes. Overall, these results suggest that differences in diversification rates have played a major role in shaping the modern latitudinal diversity gradient in mammals, and illustrate the usefulness of recently developed phylogenetic approaches for understanding this famous yet mysterious pattern.  相似文献   

13.
We describe the application of molecular biological techniques to estimate eukaryotic diversity (primarily fungi, algae, and protists) in Antarctic soils across a latitudinal and environmental gradient between approximately 60 and 87°S. The data were used to (i) test the hypothesis that diversity would decrease with increasing southerly latitude and environmental severity, as is generally claimed for “higher” faunal and plant groups, and (ii) investigate the level of endemicity displayed in different taxonomic groups. Only limited support was obtained for a systematic decrease in diversity with latitude, and then only at the level of a gross comparison between maritime (Antarctic Peninsula/Scotia Arc) and continental Antarctic sites. While the most southerly continental Antarctic site was three to four times less diverse than all maritime sites, there was no evidence for a trend of decreasing diversity across the entire range of the maritime Antarctic (60 to 72°S). Rather, we found the reverse pattern, with highest diversity at sites on Alexander Island (ca. 72°S), at the southern limit of the maritime Antarctic. The very limited overlap found between the eukaryotic biota of the different study sites, combined with their generally low relatedness to existing sequence databases, indicates a high level of Antarctic site isolation and possibly endemicity, a pattern not consistent with similar studies on other continents.  相似文献   

14.
A decline in species richness moving from equatorial regions to polar regions is a common, but not universal, macroecological pattern. Many studies have focused on this pattern, but few have focused on how the vital rates responsible for species richness patterns, local rates of species extinction and turnover, vary with latitude. We examine patterns of richness, turnover and extinction in North American avian communities inhabiting three ecoregions, using methods that account for failure to detect all species present. We use breeding bird point count data from > 1000 routes in the Breeding Bird Survey collected from 1982 to 2001 to estimate richness, extinction probability and turnover rates. Our analyses differ from others in 1) the use of annual estimates derived at specific locations rather than index data accumulated over numbers of years, 2) the use of estimators that incorporated detection probabilities and 3) a focus on dynamical processes (colonization, extinction) in addition to static patterns (species richness). We find average species richness estimates (48 to 135 species) increasing with latitude for all three regions, contradicting predictions based on the latitudinal diversity gradient. The estimated rates of extinction and turnover declined with latitude across the three ecoregions. We speculate that higher richness might be linked to periods of superabundant food supply in northern areas that support greater numbers of resident and migrant species. Our primary ecological conclusions are that the latitudinal gradient in species richness is reversed for North American birds in the studied ecoregions, and that both local extinction and turnover decrease from southern to northern latitudes. Thus, the vital rates that determine richness show evidence of greater stability and reduced dynamics in northern areas of higher richness. We recommend additional studies examining patterns of colonization, extinction and turnover in communities, that use clearly defined estimators that deal with detection probability.  相似文献   

15.
Holocene climate warming has dramatically altered biological diversity and distributions. Recent human-induced emissions of greenhouse gases will exacerbate global warming and thus induce threats to cold-adapted taxa. However, the impacts of this major climate change on transcontinental temperate species are still poorly understood. Here, we generated extensive genomic datasets for a water strider, Aquarius paludum, which was sampled across its entire distribution in Eurasia and used these datasets in combination with ecological niche modeling (ENM) to elucidate the influence of the Holocene and future climate warming on its population structure and demographic history. We found that A. paludum consisted of two phylogeographic lineages that diverged in the middle Pleistocene, which resulted in a “west–east component” genetic pattern that was probably triggered by Central Asia-Mongoxin aridification and Pleistocene glaciations. The diverged western and eastern lineages had a second contact in the Holocene, which shaped a temporary hybrid zone located at the boundary of the arid–semiarid regions of China. Future predictions detected a potentially novel northern corridor to connect the western and eastern populations, indicating west–east gene flow would possibly continue to intensify under future warming climate conditions. Further integrating phylogeographic and ENM analyses of multiple Eurasian temperate taxa based on published studies reinforced our findings on the “west–east component” genetic pattern and the predicted future northern corridor for A. paludum. Our study provided a detailed paradigm from a phylogeographic perspective of how transcontinental temperate species differ from cold-adapted taxa in their response to climate warming.  相似文献   

16.
The clupeoid fishes are distributed worldwide, with marine, freshwater and euryhaline species living in either tropical or temperate environments. Regional endemism is important at the species and genus levels, and the highest species diversity is found in the tropical marine Indo-West Pacific region. The clupeoid distribution follows two general pattern of species richness, the longitudinal and latitudinal gradients. To test historical hypotheses explaining the formation of these two gradients, we have examined the early biogeography of the Clupeoidei in reconstructing the evolution of their habitat preferences along with their ancestral range distributions on a time-calibrated mitogenomic phylogeny. The phylogenetic results support the distinction of nine main lineages within the Clupeoidei, five of them new. We infer several independent transitions from a marine to freshwater environment and from a tropical to temperate environment that occurred after the initial diversification period of the Clupeoidei. These results combined with our ancestral range reconstruction hypothesis suggest that the probable region of origin and diversification of the Clupeoidei during the Cretaceous period was the tropical marine precursor to the present Indo-West Pacific region. Thus, our study favors the hypotheses of “Region of origin” and “Tropical conservatism” to explain the origins of the longitudinal and latitudinal gradients of clupeoid species richness, respectively. Additional geological and paleontological evidence further define the tropical marine paleo-region of origin as the eastern Tethys Sea region. The Cretaceous fossil record of the Clupeoidei is partially incongruent with the results here as it contains taxa found outside this region. We discuss three possible causes of conflict between our biogeographical hypothesis and the distributions of the Cretaceous clupeoid fossils: regional extinction, incomplete taxonomic sampling and incorrect timescale estimation.  相似文献   

17.
The consistent decrease in species richness with latitude shows several exceptions among marine organisms. We hypothesize that contrasting latitudinal diversity gradients can be explained by differences in critical life-history attributes, such as mode of larval development (MLD). We deconstructed latitudinal species richness patterns of marine benthic invertebrates according to MLD to elucidate differences in patterns of species richness and to reveal underlying processes. The patterns of species richness were remarkably similar across taxa within MLD but differed between MLD. Species richness decreased polewards in planktotrophic species and increased in direct developers. Temperature explained most of the variation in species richness. Low temperature at high latitudes may generally favour direct developing species, but, together with low chlorophyll- a concentration, limit the distribution of planktotrophic species. The contrasting influence of temperature on different MLDs might be explained by its effect on the length of planktonic life and on brooding costs.  相似文献   

18.
Aims (i) To describe at the level of local communities latitudinal gradients in the species richness of different families of New World bats and to explore the generality of such gradients. (ii) To characterize the relative effects of changes in the richness of each family to the richness of entire communities. (iii) To determine differences in the rate and direction of latitudinal gradients in species richness within families. (iv) To evaluate how differences among families regarding latitudinal gradients in species richness influence the latitudinal gradient in species richness of entire communities. Location Continental New World ranging from the northern continental United States (Iowa, 42° N) to eastern Paraguay (Canindeyú, 24° S). Methods Data on the species composition of communities came from 32 intensively sampled sites. Analyses focused on species richness of five of nine New World bat families. Multivariate analysis of variance and discriminant function analysis determined and described differences among temperate, subtropical, and tropical climatic zones regarding the species richness of bat families. Simple linear regression described latitudinal gradients in species richness of families. Path analysis was used to describe: (i) the direct effect of latitude on species richness of communities, (ii) the indirect effects of latitude on the species richness of communities through its effect on the species richness of each family, (iii) the relative effects of latitude on the species richness of bat families, and (iv) the relative contribution of each family to variation in the species richness of communities. Results Highly significant differences among climatic zones existed primarily because of a difference between the temperate zone and the tropical and subtropical zones combined. This difference was associated with the high number of vespertilionids in the temperate zone and the high number of phyllostomids in the tropical and subtropical zones. Latitudinal gradients in species richness were contingent on phylogeny. Although only three of the five families exhibited significant gradients, all families except for the Vespertilionidae exhibited indistinguishable increases in species richness with decreases in latitude. The Emballonuridae, Phyllostomidae and Vespertilionidae exhibited significant latitudinal gradients whereby the former two families exhibited the classical increase in species richness with decreasing latitude and the latter family exhibited the opposite pattern. Variation in species richness of all families contributed significantly to variation in the species richness of entire communities. Nonetheless, the Phyllostomidae made a significantly stronger contribution to changes in species richness of communities than did all other families. Much of the latitudinal gradient in species richness of communities could be accounted for by the effects of latitude on the species richness of constituent families. Main conclusions Ecological and evolutionary differences among higher taxonomic units, particularly those differences involving life‐history traits, predispose taxa to exhibit different patterns of diversity along environmental gradients. This may be particularly true along extensive gradients such as latitude. Nonetheless, species rich taxa, by virtue of their greater absolute rates of change, can dominate and therefore define the pattern of diversity at a higher taxonomic level and eclipse differences among less represented taxa in their response to environmental gradients. This is true not only with respect to how bats drive the latitudinal gradient in species richness for all mammals, but also for how the Phyllostomidae drives the latitudinal gradient for all bats in the New World. Better understanding of the mechanistic basis of latitudinal gradients of diversity may come from comparing and contrasting patterns across lower taxonomic levels of a higher taxon and by identifying key ecological and evolutionary traits that are associated with such differences.  相似文献   

19.
Latitudinal gradients in diversity: real patterns and random models   总被引:4,自引:0,他引:4  
Mid-domain models have been argued lo provide a default explanation for the best known spatial pattern in biodiversity, namely the latitudinal gradient in species richness. These models assume no environmental gradients, but merely a random latitudinal association between the size and placement of the geographic ranges of species. A mid-domain peak in richness is generated because when the latitudinal extents of species in a given taxonomic group are bounded to north and south, perhaps by a physical constraint such as a continental edge or perhaps by a climatic constraint such as a critical temperature or precipitation threshold, then the number of ways in which ranges can be distributed changes systematically between the bounds. In addition, such models make predictions about latitudinal variation in the latitudinal extents of the distributions of species, and in beta diversity (the spatial turnover in species identities). Here we test how well five mid-domain models predict observed latitudinal patterns of species richness, latitudinal extent and beta diversity in two groups of birds, parrots and woodpeckers, across the New World. Whilst both groups exhibit clear gradients in richness and beta diversity and the general trend in species richness is acceptably predicted (but not accurately, unless substantial empirical information is assumed), the fit of these models is uniformly poor for beta diversity and latitudinal range extent. This suggests either that, at least for these data, as presently formulated mid-domain models are too simplistic, or that in practice the mid-domain effect is not significant in determining geographical variation in diversity.  相似文献   

20.
Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3′- 45°7′ N; 5°3′W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号