首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Suppressor of cytokine signaling (SOCS)-3 has been suggested to regulate CXCR4 signaling in a variety of human cell lines. In mice, conditional SOCS3 inactivation in hematopoietic cells including B-lineage lymphocytes has been reported to exacerbate CXCR4-signaling and focal adhesion kinase phosphorylation, which resulted in altered immature B cell distribution in bone marrow (BM) due to sustained α4β1 integrin-mediated adhesion to the extracellular matrix. However, a recent study examining conditional SOCS3 deletion specifically in B-lineage cells failed to detect significant roles in B-lineage cell retention in BM. In this study we carefully examined the role played by SOCS3 in CXCR4 signaling in developing B cell subsets. We show that in mice conditionally deficient in SOCS3 exclusively in B cells (Socs3 fl/fl Mb1 cre/+) there was no detectable difference in B cell development in BM and in periphery. We show that SOCS3 deficient and sufficient immature B cell subsets are similarly distributed between BM parenchyma and sinusoids, and are equally competent at exiting BM into peripheral blood. Furthermore, we found no significant differences in CXCR4 desensitization upon ligand exposure in developing B lymphocyte subsets. Consequently, SOCS3-deficient and sufficient B-lineage cell migration towards CXCL12 in vitro was undistinguishable, and B-lineage cell amoeboid motility within BM parenchyma was also unaffected by SOCS3-deficiency. Thus we conclude that SOCS3 has no detectable influence on biological processes known to be controlled by CXCR4 signaling.  相似文献   

2.
Two distinct microenvironmental niches that regulate hematopoietic stem/progenitor cell physiology in the adult bone marrow have been proposed; the endosteal and the vascular niche. While extensive studies have been performed relating to molecular interactions in the endosteal niche, the mechanisms that regulate hematopoietic stem/progenitor cell interaction with bone marrow endothelial cells are less well defined. Here we demonstrate that endothelial cells derived from the bone marrow supported hematopoietic stem/progenitor cells to a higher degree than other endothelial or stromal cell populations. This support was dependant upon placental growth factor expression, as genetic knockdown of mRNA levels reduced the ability of endothelial cells to support hematopoietic stem/progenitor cells in vitro. Furthermore, using an in vivo model of recovery from radiation induced myelosuppression, we demonstrate that bone marrow endothelial cells were able to augment the recovery of the hematopoietic stem/progenitor cells. However, this effect was diminished when the same cells with reduced placental growth factor expression were administered, possibly owing to a reduced homing of the cells to the bone marrow vasculature. Our data suggest that placental growth factor elaborated from bone marrow endothelial cells mediates the regulatory effects of the vascular niche on hematopoietic stem/progenitor cell physiology.  相似文献   

3.
ERdj4 is a BiP cochaperone regulated by the unfolded protein response to facilitate degradation of unfolded and/or misfolded proteins in the endoplasmic reticulum. As the unfolded protein response plays a critical role in B cell maturation and antibody production, ERdj4 gene trap mice were generated to determine if this chaperone was required for B cell homeostasis. Homozygosity for the trapped allele resulted in hypomorphic expression of ERdj4 in bone marrow cells and abnormal development of hematopoietic lineages in the bone marrow. The number of myeloid cells was increased, while the number of erythroid and B lymphoid cells was reduced in ERdj4 gene trap mice compared to controls. An intrinsic B cell defect was identified that decreased survival of B cell precursors including large and small pre-B, and immature B cells. Consistent with impaired B lymphopoiesis, the number of mature follicular B cells was reduced in both the bone marrow and spleen of ERdj4 gene trap mice. Paradoxically, unchallenged ERdj4 gene trap mice showed non-specific hypergammaglobulinemia and gene trap B cells exhibited increased proliferation, survival and isotype switching in response to LPS stimulation. Although ERdj4 gene trap mice responded normally to T cell-independent antigen, they failed to mount a specific antibody response to T cell-dependent antigen in vivo. Collectively, these findings demonstrate that the chaperone activity of ERdj4 is required for survival of B cell progenitors and normal antibody production.  相似文献   

4.
Opa1 catalyzes fusion of inner mitochondrial membranes and formation of the cristae. OPA1 mutations in humans lead to autosomal dominant optic atrophy. OPA1 knockout mice lose viability around embryonic day 9 from unknown reasons, indicating that OPA1 is essential for embryonic development. Zebrafish are an attractive model for studying vertebrate development and have been used for many years to describe developmental events that are difficult or impractical to view in mammalian models. In this study, Opa1 was successfully depleted in zebrafish embryos using antisense morpholinos, which resulted in disrupted mitochondrial morphology. Phenotypically, these embryos exhibited abnormal blood circulation and heart defects, as well as small eyes and small pectoral fin buds. Additionally, startle response was reduced and locomotor activity was impaired. Furthermore, Opa1 depletion caused bioenergetic defects, without impairing mitochondrial efficiency. In response to mitochondrial dysfunction, a transient upregulation of the master regulator of mitochondrial biogenesis, pgc1a, was observed. These results not only reveal a new Opa1-associated phenotype in a vertebrate model system, but also further elucidates the absolute requirement of Opa1 for successful vertebrate development.  相似文献   

5.
6.
Hdac3 is a key target for Hdac inhibitors that are efficacious in cutaneous T cell lymphoma. Moreover, the regulation of chromatin structure is critical as thymocytes transition from an immature cell with open chromatin to a mature T cell with tightly condensed chromatin. To define the phenotypes controlled by Hdac3 during T cell development, we conditionally deleted Hdac3 using the Lck-Cre transgene. This strategy inactivated Hdac3 in the double-negative stages of thymocyte development and caused a significant impairment at the CD8 immature single-positive (ISP) stage and the CD4/CD8 double-positive stage, with few mature CD4+ or CD8+ single-positive cells being produced. When Hdac3−/− mice were crossed with Bcl-xL-, Bcl2-, or TCRβ-expressing transgenic mice, a modest level of complementation was found. However, when the null mice were crossed with mice expressing a fully rearranged T cell receptor αβ transgene, normal levels of CD4 single-positive cells were produced. Thus, Hdac3 is required for the efficient transit from double-negative stage 4 through positive selection.  相似文献   

7.
We recently identified a single family member homologue of syntaxin in the sea urchin. Syntaxin is present throughout development, and in rapidly dividing cleavage stage embryos it is present on numerous vesicles at the cell cortex. We hypothesized that syntaxin mediates essential membrane fusion events during early embryogenesis, reasoning that the vesicles and/or their contents are important for development. Here we show that functional inactivation of syntaxin with either Botulinum neurotoxin C1, which specifically proteolyzes syntaxin, or antibodies against syntaxin results in an inhibition of cell division. These observations suggest that syntaxin is essential for membrane fusion events critical for cell division.  相似文献   

8.
9.
Desmosomes first assemble in the E3.5 mouse trophectoderm, concomitant with establishment of epithelial polarity and appearance of a blastocoel cavity. Throughout development, they increase in size and number and are especially abundant in epidermis and heart muscle. Desmosomes mediate cell–cell adhesion through desmosomal cadherins, which differ from classical cadherins in their attachments to intermediate filaments (IFs), rather than actin filaments. Of the proteins implicated in making this IF connection, only desmoplakin (DP) is both exclusive to and ubiquitous among desmosomes. To explore its function and importance to tissue integrity, we ablated the desmoplakin gene. Homozygous −/− mutant embryos proceeded through implantation, but did not survive beyond E6.5. Mutant embryos proceeded through implantation, but did not survive beyond E6.5. Surprisingly, analysis of these embryos revealed a critical role for desmoplakin not only in anchoring IFs to desmosomes, but also in desmosome assembly and/or stabilization. This finding not only unveiled a new function for desmoplakin, but also provided the first opportunity to explore desmosome function during embryogenesis. While a blastocoel cavity formed and epithelial cell polarity was at least partially established in the DP (−/−) embryos, the paucity of desmosomal cell–cell junctions severely affected the modeling of tissue architecture and shaping of the early embryo.  相似文献   

10.
11.
B cell maturation and B cell-mediated antibody response require programmed DNA modifications such as the V(D)J recombination, the immunoglobulin (Ig) class switch recombination, and the somatic hypermutation to generate functional Igs. Many protein factors involved in DNA damage repair have been shown to be critical for the maturation and activation of B cells. Rad9 plays an important role in both DNA repair and cell cycle checkpoint control. However, its role in Ig generation has not been reported. In this study, we generated a conditional knock-out mouse line in which Rad9 is deleted specifically in B cells and investigated the function of Rad9 in B cells. The Rad9−/− B cells isolated from the conditional knock-out mice displayed impaired growth response and enhanced DNA lesions. Impaired Ig production in response to immunization in Rad9−/− mice was also detected. In addition, the Ig class switch recombination is deficient in Rad9−/− B cells. Taken together, Rad9 plays dual roles in generating functional antibodies and in maintaining the integrity of the whole genome in B cells.  相似文献   

12.
Aurora激酶是参与细胞周期调节的重要激酶,已成为肿瘤研究领域的热点.近年来有研究表明, Aurora激酶A(Aurora kinase A,AURKA)对卵母细胞减数分裂也起到重要的调节作用,但对其在哺乳动物早期胚胎发育中的研究鲜有报道.本研究利用显微注射向受精卵中导入干扰AURKA表达的质粒,观察了AURKA表达敲低对小鼠受精卵早期发育的影响,并检测丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)通路抑制后,小鼠受精卵卵裂及AURKA表达与活性变化.实验结果表明,干扰AURKA的表达可导致受精卵发育停滞和异常分裂.MAPK通路的抑制亦可破坏受精卵正常卵裂,并下调AURKA的蛋白表达及活性.实验结果提示,AURKA是小鼠受精卵早期发育所必需的,并与MAPK通路的激活相关.  相似文献   

13.
14.
15.
Many aspects of blood cell formation can now be modeled in culture and rapid progress is being made in understanding how blood cell precursors interact with unique components of their environment. This brief review considers some cell interaction molecules that may be important for controlling the position of cells within, as well as their egress from, bone marrow.  相似文献   

16.
17.
18.
骨髓造血干细胞微环境   总被引:1,自引:0,他引:1  
近来成体干细胞的研究进展为许多重大疾病的治疗带来了新的希望.造血干细胞 (hematopoietic stem cells, HSCs)是迄今认识到的最为典型的成体干细胞, 骨髓是干细胞研究的主要组织, 许多成体干细胞的概念及其基本特征源于对骨髓中造血干细胞的研究.近年来的重要进展之一是微环境对HSCs的调节功能, 干细胞微环境有准确的解剖学定位, 也是一个生理功能的基本单位, 整合介导机体对干细胞需求的反应信号, 从而调节干细胞的数量和命运.在病理条件下, 微环境仍然调节干细胞的功能, 因此对造血微环境的认识已成为干细胞研究的中心内容.现对骨髓造血干细胞微环境的组成、信号及修饰的研究进展进行综述, 为深入研究干细胞微环境的结构和功能提供背景资料.  相似文献   

19.
Calponins form an evolutionary highly conserved family of actin filament-associated proteins expressed in both smooth muscle and non-muscle cells. Whereas calponin-1 and calponin-2 have already been studied to some extent, little is known about the role of calponin-3 under physiological conditions due to the lack of an appropriate animal model. Here, we have used an unbiased screen to identify novel proteins implicated in signal transduction downstream of the precursor B cell receptor (pre-BCR) in B cells. We find that calponin-3 is expressed throughout early B cell development, localizes to the plasma membrane and is phosphorylated in a Syk-dependent manner, suggesting a putative role in pre-BCR signaling. To investigate this in vivo, we generated a floxed calponin-3-GFP knock-in mouse model that enables tracking of cells expressing calponin-3 from its endogenous promoter and allows its tissue-specific deletion. Using the knock-in allele as a reporter, we show that calponin-3 expression is initiated in early B cells and increases with their maturation, peaking in the periphery. Surprisingly, conditional deletion of the Cnn3 revealed no gross defects in B cell development despite this regulated expression pattern and the in vitro evidence, raising the question whether other components may compensate for its loss in lymphocytes. Together, our work identifies calponin-3 as a putative novel mediator downstream of the pre-BCR. Beyond B cells, the mouse model we generated will help to increase our understanding of calponin-3 in muscle and non-muscle cells under physiological conditions.  相似文献   

20.

Background

In our previous study we found that the expression of stlA showed peaks both in the early and last stages of development and that a product of SteelyA, 4-methyl-5-pentylbenzene-1,3-diol (MPBD), controlled Dictyostelium spore maturation during the latter. In this study we focused on the role of SteelyA in early stage development.

Principal Findings

Our stlA null mutant showed aggregation delay and abnormally small aggregation territories. Chemotaxis analysis revealed defective cAMP chemotaxis in the stlA null mutant. cAMP chemotaxis was restored by MPBD addition during early stage development. Assay for cAMP relay response revealed that the stlA null mutant had lower cAMP accumulation during aggregation, suggesting lower ACA activity than the wild type strain. Exogenous cAMP pulses rescued the aggregation defect of the stlA null strain in the absence of MPBD. Expression analysis of cAMP signalling genes revealed lower expression levels in the stlA null mutant during aggregation.

Conclusion

Our data indicate a regulatory function by SteelyA on cAMP signalling during aggregation and show that SteelyA is indispensable for full activation of ACA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号