首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting.

Methods

Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n = 54) and controls (n = 56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n = 10 Luminal A-like; n = 10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n = 44 Luminal A; n = 46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated.

Results

Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis (miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652). The biomarker potential of 4 miRNAs (miR-29a, miR-181a, miR-223 and miR-652) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p = 0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs (miR-29a, miR-181a and miR-652) could reliably differentiate between cancers and controls with an AUC of 0.80.

Conclusion

This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype-specific breast tumor detection.  相似文献   

2.

Background

Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of renal failure. The goal of the present study was to investigate the dynamic relationship of circulating and renal microRNA profiles within the first 24 hours after bilateral ischemia-reperfusion kidney injury in mice.

Methodology/Principal Findings

Bilateral renal ischemia was induced in C57Bl/6 mice (n = 10 per group) by clamping the renal pedicle for 27 min. Ischemia-reperfusion caused highly reproducible, progressive, concordant elevation of miR-714, miR-1188, miR-1897-3p, miR-877*, and miR-1224 in plasma and kidneys at 3, 6 and 24 hours after acute kidney injury compared to the sham-operated mice (n = 5). These dynamics correlated with histologic findings of kidney injury and with a conventional plasma marker of renal dysfunction (creatinine). Pathway analysis revealed close association between miR-1897-3p and Nucks1 gene expression, which putative downstream targets include genes linked to renal injury, inflammation and apoptosis.

Conclusions/Significance

Systematic profiling of renal and plasma microRNAs in the early stages of experimental AKI provides the first step in advancing circulating microRNAs to the level of promising novel biomarkers.  相似文献   

3.
Onco-miR-182-5p has been reported to be over-expressed in bladder cancer (BC) tissues however a detailed functional analysis of miR-182-5p has not been carried out in BC. Therefore the purpose of this study was to: 1. conduct a functional analysis of miR-182-5p in bladder cancer, 2. assess its usefulness as a tumor marker, 3. identify miR-182-5p target genes in BC. Initially we found that miR-182-5p expression was significantly higher in bladder cancer compared to normal tissues and high miR-182-5p expression was associated with shorter overall survival in BC patients. To study the functional significance of miR-182-5p, we over-expressed miR-182-5p with miR-182-5p precursor and observed that cell proliferation, migration and invasion abilities were increased in BC cells. However cell apoptosis was inhibited by miR-182-5p. We also identified Smad4 and RECK as potential target genes of miR-182-5p using several algorithms. 3′UTR luciferase activity of these target genes was significantly decreased and protein expression of these target genes was significantly up-regulated in miR-182-5p inhibitor transfected bladder cancer cells. MiR-182-5p also increased nuclear beta-catenin expression and while Smad4 repressed nuclear beta-catenin expression. In conclusion, our data suggests that miR-182-5p plays an important role as an oncogene by knocking down RECK and Smad4, resulting in activation of the Wnt-beta-catenin signaling pathway in bladder cancer.  相似文献   

4.
5.

Aims

MicroRNAs (miRNAs) play important roles in the pathogenesis of cardiovascular diseases. Circulating miRNAs were recently identified as biomarkers for various physiological and pathological conditions. In this study, we aimed to identify the circulating miRNA fingerprint of vulnerable coronary artery disease (CAD) and explore its potential as a novel biomarker for this disease.

Methods and Results

The Taqman low-density miRNA array and coexpression network analyses were used to identify distinct miRNA expression profiles in the plasma of patients with typical unstable angina (UA) and angiographically documented CAD (UA group, n = 13) compared to individuals with non-cardiac chest pain (control group, n = 13). Significantly elevated expression levels of miR-106b/25 cluster, miR-17/92a cluster, miR-21/590-5p family, miR-126*, and miR-451 were observed in UA patients compared to controls. These findings were validated by real-time PCR in another 45 UA patients, 31 stable angina patients, and 37 controls. In addition, miR-106b, miR-25, miR-92a, miR-21, miR-590-5p, miR-126* and miR-451 were upregulated in microparticles (MPs) isolated from the plasma of UA patients (n = 5) compared to controls (n = 5). Using flow cytometry and immunolabeling, we further found that Annexin V+ MPs were increased in the plasma samples of UA patients compared to controls, and the majority of the increased MPs in plasma were shown to be Annexin V+ CD31+ MPs. The findings suggest that Annexin V+ CD31+ MPs may contribute to the elevated expression of the selected miRNAs in the circulation of patients with vulnerable CAD.

Conclusion

The circulating miRNA signature, consisting of the miR-106b/25 cluster, miR-17/92a cluster, miR-21/590-5p family, miR-126* and miR-451, may be used as a novel biomarker for vulnerable CAD.

Trial Registration

Chinese Clinical Trial Register, ChiCTR-OCH-12002349.  相似文献   

6.
Since brain tissue is not readily accessible, a new focus in search of biomarkers for schizophrenia is blood-based expression profiling of non-protein coding genes such as microRNAs (miRNAs), which regulate gene expression by inhibiting the translation of messenger RNAs. This study aimed to identify potential miRNA signature for schizophrenia by comparing genome-wide miRNA expression profiles in patients with schizophrenia vs. healthy controls. A genome-wide miRNA expression profiling was performed using a Taqman array of 365 human miRNAs in the mononuclear leukocytes of a learning set of 30 cases and 30 controls. The discriminating performance of potential biomarkers was validated in an independent testing set of 60 cases and 30 controls. The expression levels of the miRNA signature were then evaluated for their correlation with the patients'' clinical symptoms, neurocognitive performances, and neurophysiological functions. A seven-miRNA signature (hsa-miR-34a, miR-449a, miR-564, miR-432, miR-548d, miR-572 and miR-652) was derived from a supervised classification with internal cross-validation, with an area under the curve (AUC) of receiver operating characteristics of 93%. The putative signature was then validated in the testing set, with an AUC of 85%. Among these miRNAs, miR-34a was differentially expressed between cases and controls in both the learning (P = 0.005) and the testing set (P = 0.002). These miRNAs were differentially correlated with patients'' negative symptoms, neurocognitive performance scores, and event-related potentials. The results indicated that the mononuclear leukocyte-based miRNA profiling is a feasible way to identify biomarkers for schizophrenia, and the seven-miRNA signature warrants further investigation.  相似文献   

7.
In the last decade, Acute Kidney Injury (AKI) diagnosis and therapy have not notably improved probably due to delay in the diagnosis, among other issues. Precocity and accuracy should be critical parameters in novel AKI biomarker discovery. microRNAs are key regulators of cell responses to many stimuli and they can be secreted to the extracellular environment. Therefore, they can be detected in body fluids and are emerging as novel disease biomarkers. We aimed to identify and validate serum miRNAs useful for AKI diagnosis and management. Using qRT-PCR arrays in serum samples, we determined miRNAs differentially expressed between AKI patients and healthy controls. Statistical and target prediction analysis allowed us to identify a panel of 10 serum miRNAs. This set was further validated, by qRT-PCR, in two independent cohorts of patients with relevant morbi-mortality related to AKI: Intensive Care Units (ICU) and Cardiac Surgery (CS). Statistical correlations with patient clinical parameter were performed. Our results demonstrated that the 10 selected miRNAs (miR-101-3p, miR-127-3p, miR-210-3p, miR-126-3p, miR-26b-5p, miR-29a-3p, miR-146a-5p, miR-27a-3p, miR-93-3p and miR-10a-5p) were diagnostic biomarkers of AKI in ICU patients, exhibiting areas under the curve close to 1 in ROC analysis. Outstandingly, serum miRNAs estimated before CS predicted AKI development later on, thus becoming biomarkers to predict AKI predisposition. Moreover, after surgery, the expression of the miRNAs was modulated days before serum creatinine increased, demonstrating early diagnostic value. In summary, we have identified a set of serum miRNAs as AKI biomarkers useful in clinical practice, since they demonstrate early detection and high diagnostic value and they recognize patients at risk.  相似文献   

8.
In renal transplantation, the unresponsiveness of patients undergoing chronic antibody mediated rejection (CAMR) to classical treatment stress on the need for accurate biomarkers to improve its diagnosis. We aim to determine whether microRNA expression patterns may be associated with a diagnosis of CAMR. We performed expression profiling of miRNAs in peripheral blood mononuclear cells (PBMC) of kidney transplant recipients with CAMR or stable graft function. Among 257 expressed miRNAs, 10 miRNAs associated with CAMR were selected. Among them, miR-142-5p was increased in PBMC and biopsies of patients with CAMR as well as in a rodent model of CAMR. The lack of modulation of miR-142-5p in PBMC of patients with renal failure, suggests that its over-expression in CAMR was associated with immunological disorders rather than renal dysfunction. A ROC curve analysis performed on independent samples showed that miR-142-5p is a potential biomarker of CAMR allowing a very good discrimination of the patients with CAMR (AUC = 0.74; p = 0.0056). Moreover, its expression was decreased in PHA-activated blood cells and was not modulated in PBMC from patients with acute rejection, excluding a non-specific T cell activation expression. The absence of modulation of this miRNA in immunosuppressed patients suggests that its expression was not influenced by treatment. Finally, the analysis of miR-142-5p predicted targets under-expressed in CAMR PBMC in a published microarray dataset revealed an enrichment of immune-related genes. Altogether, these data suggest that miR-142-5p could be used as a biomarker in CAMR and these finding may improve our understanding of chronic rejection mechanisms.  相似文献   

9.
10.
The diagnosis of non-small cell lung carcinoma (NSCLC) at an early stage, as well as better prediction of outcome remains clinically challenging due to the lack of specific and robust non-invasive markers. The discovery of microRNAs (miRNAs), particularly those found in the bloodstream, has opened up new perspectives for tumor diagnosis and prognosis. The aim of our study was to determine whether expression profiles of specific miRNAs in plasma could accurately discriminate between NSCLC patients and controls, and whether they are able to predict the prognosis of resectable NSCLC patients. We therefore evaluated a series of seventeen NSCLC-related miRNAs by quantitative real-time (qRT)-PCR in plasma from 52 patients with I-IIIA stages NSCLC, 10 patients with chronic obstructive pulmonary disease (COPD) and 20-age, sex and smoking status-matched healthy individuals. We identified an eleven-plasma miRNA panel that could distinguish NSCLC patients from healthy subjects (AUC = 0.879). A six-plasma miRNA panel was able to discriminate between NSCLC patients and COPD patients (AUC = 0.944). Furthermore, we identified a three-miRNA plasma signature (high miR-155-5p, high miR-223-3p, and low miR-126-3p) that significantly associated with a higher risk for progression in adenocarcinoma patients. In addition, a three-miRNA plasma panel (high miR-20a-5p, low miR-152-3p, and low miR-199a-5p) significantly predicted survival of squamous cell carcinoma patients. In conclusion, we identified two plasma miRNA expression profiles that may be useful for predicting the outcome of patients with resectable NSCLC.  相似文献   

11.
Purpose: Circulating microRNAs (miRNAs) prove to be promising diagnostic biomarkers for various cancers, including endometrial cancer (EC). The present study aims to identify serum microRNAs that can serve as potential biomarkers for EC diagnosis.Patients and methods: A total of 92 EC and 102 normal control (NC) serum samples were analyzed using quantitative real-time polymerase chain reaction (qRT-PCR) in this four-phase experiment. The logistic regression method was used to construct a diagnostic model based on the differentially expressed miRNAs in serum. The receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value. To further validate the diagnostic capacity of the identified signature, the 6-miRNA marker was compared with previously reported biomarkers and verified in three public datasets. In addition, the expression characteristics of the identified miRNAs were further explored in tissue and serum exosomes samples.Results: Six miRNAs (miR-143-3p, miR-195-5p, miR-20b-5p, miR-204-5p, miR-423-3p, and miR-484) were significantly overexpressed in the serum of EC compared with NCs. Areas under the ROC of the 6-miRNA signatures were 0.748, 0.833, and 0.967 for the training, testing, and the external validation phases, respectively. The identified signature has a very stable diagnostic performance in the large cohorts of three public datasets. Compared with previously identified miRNA biomarkers, the 6-miRNA signature in the present study has superior performance in diagnosing EC. Moreover, the expression of miR-143-3p and miR-195-5p in tissues and the expression of miR-20b-5p in serum exosomes were consistent with those in serum.Conclusions: We established a 6-miRNA signature in serum and they could function as potential non-invasive biomarker for EC diagnosis.  相似文献   

12.

Background

Recent reports suggest that immigrants from Middle Eastern countries are a high-risk group for type 2 diabetes (T2D) compared with Swedes, and that the pathogenesis of T2D may be ethnicity-specific. Deregulation of microRNA (miRNA) expression has been demonstrated to be associated with T2D but ethnic differences in miRNA have not been investigated. The aim of this study was to explore the ethnic specific expression (Swedish and Iraqi) of a panel of 14 previously identified miRNAs in patients without T2D (including those with prediabetes) and T2D.

Methods

A total of 152 individuals were included in the study (84 Iraqis and 68 Swedes). Nineteen Iraqis and 14 Swedes were diagnosed with T2D. Expression of the 14 selected miRNAs (miR-15a, miR-20, miR-21, miR-24, miR-29b, miR-126, miR-144, miR-150, miR-197, miR-223, miR-191, miR-320a, miR-486-5p, and miR-28-3p) in plasma samples was measured by real-time PCR.

Results

In the whole study population, the expression of miR-24 and miR-29b was significantly different between T2D patients and controls after adjustment for age, sex, waist circumference, family history of T2D, and a sedentary lifestyle. Interestingly, when stratifying the study population according to country of birth, we found that higher expression of miR-144 was significantly associated with T2D in Swedes (OR = 2.43, p = 0.035), but not in Iraqis (OR = 0.54, p = 0.169). The interaction test was significant (p = 0.017).

Conclusion

This study suggests that the association between plasma miR-144 expression and T2D differs between Swedes and Iraqis.  相似文献   

13.
Hepatocellular carcinoma (HCC) is one of the most common lethal cancers worldwide. To explore the potential prognosis-associated microRNAs (miRNAs) for HCC patients, we performed integrated analyses on the miRNA expression profiles from The Cancer Genome Atlas project. Genome-wide overall survival (OS)- and progression-free survival (PFS)-associated miRNA screening were performed by multivariate Cox proportional hazards regression analyses. A five-miRNA expression signature (miR-148a, miR-3677-3p, miR-744*, miR-210, and miR-3613-5p) was identified as an indicator for HCC OS (p < .0001; hazard ratio [HR] = 2.631). In addition, a seven-miRNA expression signature (miR-127-5p, miR-146a, miR-152, miR-193a-3p, miR-331-5p, miR-500a*, and miR-550a*) was identified as a predictor for HCC PFS (p < .0001; HR = 2.608). This systematic analysis suggested that both the OS- and PFS-associated signatures have better performance in HCC survival prediction than the conventional clinicopathological parameters. Further functional enrichment analysis of the corresponding genes targeted by these signature miRNAs revealed their biological significance in the PI3K-Akt signaling pathway. In conclusion, our present study identified a five-miRNA OS-associated signature and a seven-miRNA PFS-associated signature as HCC prognostic biomarkers with potential clinical significance, which could enable the development of novel targeted therapeutic strategies for HCC treatment.  相似文献   

14.
15.
16.
17.
18.
Acute kidney injury (AKI) is a serious complication after liver transplantation. Currently there are no validated biomarkers available for early diagnosis of AKI. The current study was carried out to determine the usefulness of the recently identified biomarkers netrin-1 and semaphorin 3A in predicting AKI in liver transplant patients. A total of 63 patients’ samples were collected and analyzed. AKI was detected at 48 hours after liver transplantation using serum creatinine as a marker. In contrast, urine netrin-1 (897.8±112.4 pg/mg creatinine), semaphorin 3A (847.9±93.3 pg/mg creatinine) and NGAL (2172.2±378.1 ng/mg creatinine) levels were increased significantly and peaked at 2 hours after liver transplantation but were no longer significantly elevated at 6 hours after transplantation. The predictive power of netrin-1, as demonstrated by the area under the receiver-operating characteristic curve for diagnosis of AKI at 2, 6, and 24 hours after liver transplantation was 0.66, 0.57 and 0.59, respectively. The area under the curve for diagnosis of AKI was 0.63 and 0.65 for semaphorin 3A and NGAL at 2 hr respectively. Combined analysis of two or more biomarkers for simultaneous occurrence in urine did not improve the AUC for the prediction of AKI whereas the AUC was improved significantly (0.732) only when at least 1 of the 3 biomarkers in urine was positive for predicting AKI. Adjusting for BMI, all three biomarkers at 2 hours remained independent predictors of AKI with an odds ratio of 1.003 (95% confidence interval: 1.000 to 1.006; P = 0.0364). These studies demonstrate that semaphorin 3A and netrin-1 can be useful early diagnostic biomarkers of AKI after liver transplantation.  相似文献   

19.
Gliomas represent a disparate group of tumours for which there are to date no cure. Thus, there is a recognized need for new diagnostic and therapeutic approaches based on increased understanding of their molecular nature. We performed the comparison of the microRNA (miRNA) profile of 8 WHO grade II gliomas and 24 higher grade tumours (2 WHO grade III and 22 glioblastomas) by using the Affymetrix GeneChip miRNA Array v. 1.0. A relative quantification method (RT-qPCR) with standard curve was used to confirm the 22 miRNA signature resulted by array analysis. The prognostic performances of the confirmed miRNAs were estimated on the Tumor Cancer Genome Atlas (TCGA) datasets. We identified 22 miRNAs distinguishing grade II gliomas from higher grade tumours. RT-qPCR confirmed the differential expression in the two patients'' groups for 13 out of the 22 miRNAs. The analysis of the Glioblastoma Multiforme (GBM) and Lower Grade Glioma (LGG) datasets from TCGA demonstrated the association with prognosis for 6 of those miRNAs. Moreover, in the GBM dataset miR-21 and miR-210 were predictors of worse prognosis in both univariable and multivariable Cox regression analyses (HR 1.19, p = 0.04, and HR 1.18, p = 0.029 respectively). Our results support a direct contribution of miRNAs to glioma cancerogenesis and suggest that miR-21 and miR-210 may play a role in the aggressive clinical behaviour of glioblastomas.  相似文献   

20.
Mycobacterium leprae infects macrophages and Schwann cells inducing a gene expression program to facilitate its replication and progression to disease. MicroRNAs (miRNAs) are key regulators of gene expression and could be involved during the infection. To address the genetic influence of miRNAs in leprosy, we enrolled 1,098 individuals and conducted a case-control analysis in order to study four miRNAs genes containing single nucleotide polymorphism (miRSNP). We tested miRSNP-125a (rs12975333 G>T), miRSNP-223 (rs34952329 *>T), miRSNP-196a-2 (rs11614913 C>T) and miRSNP-146a (rs2910164 G>C). Amongst them, miRSNP-146a was the unique gene associated with risk to leprosy per se (GC OR = 1.44, p = 0.04; CC OR = 2.18, p = 0.0091). We replicated this finding showing that the C-allele was over-transmitted (p = 0.003) using a transmission-disequilibrium test. A functional analysis revealed that live M. leprae (MOI 100∶1) was able to induce miR-146a expression in THP-1 (p<0.05). Furthermore, pure neural leprosy biopsies expressed augmented levels of that miRNA as compared to biopsy samples from neuropathies not related with leprosy (p = 0.001). Interestingly, carriers of the risk variant (C-allele) produce higher levels of mature miR-146a in nerves (p = 0.04). From skin biopsies, although we observed augmented levels of miR-146a, we were not able to correlate it with a particular clinical form or neither host genotype. MiR-146a is known to modulate TNF levels, thus we assessed TNF expression (nerve biopsies) and released by peripheral blood mononuclear cells infected with BCG Moreau. In both cases lower TNF levels correlates with subjects carrying the risk C-allele, (p = 0.0453 and p = 0.0352; respectively), which is consistent with an immunomodulatory role of this miRNA in leprosy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号