首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Frontal and temporal language areas involved in syntactic processing are connected by several dorsal and ventral tracts, but the functional roles of the different tracts are not well understood. To identify which white matter tract(s) are important for syntactic processing, we examined the relationship between white matter damage and syntactic deficits in patients with primary progressive aphasia, using multimodal neuroimaging and neurolinguistic assessment. Diffusion tensor imaging showed that microstructural damage to left hemisphere dorsal tracts--the superior longitudinal fasciculus including its arcuate component--was strongly associated with deficits in comprehension and production of syntax. Damage to these dorsal tracts predicted syntactic deficits after gray matter atrophy was taken into account, and fMRI confirmed that these tracts connect regions modulated by syntactic processing. In contrast, damage to ventral tracts--the extreme capsule fiber system or the uncinate fasciculus--was not associated with syntactic deficits. Our findings show that syntactic processing depends primarily on dorsal language tracts.  相似文献   

2.
Disrupted white matter integrity and abnormal cortical thickness are widely reported in the pathophysiology of obsessive-compulsive disorder (OCD). However, the relationship between alterations in white matter connectivity and cortical thickness in OCD is unclear. In addition, the heritability of this relationship is poorly understood. To investigate the relationship of white matter microstructure with cortical thickness, we measure fractional anisotropy (FA) of white matter in 30 OCD patients, 19 unaffected siblings and 30 matched healthy controls. Then, we take those regions of significantly altered FA in OCD patients compared with healthy controls to perform fiber tracking. Next, we calculate the fiber quantity in the same tracts. Lastly, we compare cortical thickness in the target regions of those tracts. Patients with OCD exhibited decreased FA in cingulum, arcuate fibers near the superior parietal lobule, inferior longitudinal fasciculus near the right superior temporal gyrus and uncinate fasciculus. Siblings showed reduced FA in arcuate fibers near the superior parietal lobule and anterior limb of internal capsule. Significant reductions in both fiber quantities and cortical thickness in OCD patients and their unaffected siblings were also observed in the projected brain areas when using the arcuate fibers near the left superior parietal lobule as the starting points. Reduced FA in the left superior parietal lobule was observed not only in patients with OCD but also in their unaffected siblings. Originated from the superior parietal lobule, the number of fibers was also found to be decreased and the corresponding cortical regions were thinner relative to controls. The linkage between disrupted white matter integrity and the abnormal cortical thickness may be a vulnerability marker for OCD.  相似文献   

3.
Premature birth is highly prevalent and associated with neurodevelopmental delays and disorders. Adverse outcomes, particularly in children born before 32 weeks of gestation, have been attributed in large part to white matter injuries, often found in periventricular regions using conventional imaging. To date, tractography studies of white matter pathways in children and adolescents born preterm have evaluated only a limited number of tracts simultaneously. The current study compares diffusion properties along 18 major cerebral white matter pathways in children and adolescents born preterm (n = 27) and full term (n = 19), using diffusion magnetic resonance imaging and tractography. We found that compared to the full term group, the preterm group had significantly decreased FA in segments of the bilateral uncinate fasciculus and anterior segments of the right inferior fronto-occipital fasciculus. Additionally, the preterm group had significantly increased FA in segments of the right and left anterior thalamic radiations, posterior segments of the right inferior fronto-occipital fasciculus, and the right and left inferior longitudinal fasciculus. Increased FA in the preterm group was generally associated with decreased radial diffusivity. These findings indicate that prematurity-related white matter differences in later childhood and adolescence do not affect all tracts in the periventricular zone and can involve both decreased and increased FA. Differences in the patterns of radial diffusivity and axial diffusivity suggest that the tissue properties underlying group FA differences may vary within and across white matter tracts. Distinctive diffusion properties may relate to variations in the timing of injury in the neonatal period, extent of white matter dysmaturity and/or compensatory processes in childhood.  相似文献   

4.

Background

Neuroimaging studies in late life depression have reported decreased structural integrity of white matter tracts in the prefrontal cortex. Functional studies have identified changes in functional connectivity among several key areas involved in mood regulation. Few studies have combined structural and functional imaging. In this study we sought to examine the relationship between the uncinate fasciculus, a key fronto-temporal tract and resting state functional connectivity between the ventral prefrontal cortex ((PFC) and limbic and striatal areas.

Methods

The sample consisted of 24 older patients remitted from unipolar major depression. Each participant had a magnetic resonance imaging brain scan using standardized protocols to obtain both diffusion tensor imaging and resting state functional connectivity data. Our statistical approach compared structural integrity of the uncinate fasciculus and functional connectivity data.

Results

We found positive correlations between left uncinate fasciculus (UF) fractional anisotropy (FA) and resting state functional connectivity (rsFC) between the left ventrolateral PFC and left amygdala and between the left ventrolateral PFC and the left hippocampus. In addition, we found a significant negative correlation between left ventromedial PFC-caudate rsFC and left UF FA. The right UF FA did not correlate with any of the seed region based connectivity.

Conclusions

These results support the notion that resting state functional connectivity reflects structural integrity, since the ventral PFC is structurally connected to temporal regions by the UF. Future studies should include larger samples of patients and healthy comparison subjects in which both resting state and task-based functional connectivity are examined.  相似文献   

5.
The aim of this study was to investigate the microstructural alterations of white matter (WM) in Alzheimer’s disease (AD) patients with apathy and to observe the relationships with the severity of apathy. Sixty drug-naïve subjects took part in this study (30 apathetic and 30 nonapathetic subjects with AD). The loss of integrity in WM was compared in AD patients with and without apathy through measurement of fractional anisotropy (FA) using by tract-based spatial statistics (TBSS). In addition, we explored the correlation pattern between FA values and the severity of apathy in AD patients with apathy. The apathy group had significantly reduced FA values (pcorrected<0.05) in the genu of the corpus callosum compared to the nonapathy group. The severity of apathy was negatively correlated with FA values of the left anterior and posterior cingulum, right superior longitudinal fasciculus, splenium, body and genu of the corpus callosum and bilateral uncinate fasciculusin the apathy group (pcorrected<0.05). This study was the first to explore FA values in whole brain WM in AD patients with apathy. The findings of these microstructural alterations of WM may be the key to the understanding of underlying neurobiological mechanism and clinical significances of apathy in AD.  相似文献   

6.
Adaptive changes in respiratory and cardiovascular responses at high altitude (HA) have been well clarified. However, the central mechanisms underlying HA acclimatization remain unclear. Using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) with fractional anisotropy (FA) calculation, we investigated 28 Han immigrant residents (17–22 yr) born and raised at HA of 2616–4200 m in Qinghai-Tibetan Plateau for at least 17 years and who currently attended college at sea-level (SL). Their family migrated from SL to HA 2–3 generations ago and has resided at HA ever since. Control subjects were matched SL residents. HA residents (vs. SL) showed decreased grey matter volume in the bilateral anterior insula, right anterior cingulate cortex, bilateral prefrontal cortex, left precentral cortex, and right lingual cortex. HA residents (vs. SL) had significantly higher FA mainly in the bilateral anterior limb of internal capsule, bilateral superior and inferior longitudinal fasciculus, corpus callosum, bilateral superior corona radiata, bilateral anterior external capsule, right posterior cingulum, and right corticospinal tract. Higher FA values in those regions were associated with decreased or unchanged radial diffusivity coinciding with no change of longitudinal diffusivity in HA vs. SL group. Conversely, HA residents had lower FA in the left optic radiation and left superior longitudinal fasciculus. Our data demonstrates that HA acclimatization is associated with brain structural modifications, including the loss of regional cortical grey matter accompanied by changes in the white matter, which may underlie the physiological adaptation of residents at HA.  相似文献   

7.

Background

Alzheimer’s disease (AD) is generally considered to be characterized by pathology in gray matter of the brain, but convergent evidence suggests that white matter degradation also plays a vital role in its pathogenesis. The evolution of white matter deterioration and its relationship with gray matter atrophy remains elusive in amnestic mild cognitive impairment (aMCI), a prodromal stage of AD.

Methods

We studied 155 cognitively normal (CN) and 27 ‘late’ aMCI individuals with stable diagnosis over 2 years, and 39 ‘early’ aMCI individuals who had converted from CN to aMCI at 2-year follow up. Diffusion tensor imaging (DTI) tractography was used to reconstruct six white matter tracts three limbic tracts critical for episodic memory function - the fornix, the parahippocampal cingulum, and the uncinate fasciculus; two cortico-cortical association fiber tracts - superior longitudinal fasciculus and inferior longitudinal fasciculus; and one projection fiber tract - corticospinal tract. Microstructural integrity as measured by fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AxD) was assessed for these tracts.

Results

Compared with CN, late aMCI had lower white matter integrity in the fornix, the parahippocampal cingulum, and the uncinate fasciculus, while early aMCI showed white matter damage in the fornix. In addition, fornical measures were correlated with hippocampal atrophy in late aMCI, whereas abnormality of the fornix in early aMCI occurred in the absence of hippocampal atrophy and did not correlate with hippocampal volumes.

Conclusions

Limbic white matter tracts are preferentially affected in the early stages of cognitive dysfunction. Microstructural degradation of the fornix preceding hippocampal atrophy may serve as a novel imaging marker for aMCI at an early stage.  相似文献   

8.
Although often clinically indistinguishable in the early stages, Parkinson’s disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) have distinct neuropathological changes. The aim of the current study was to identify white matter tract neurodegeneration characteristic of each of the three syndromes. Tract-based spatial statistics (TBSS) was used to perform a whole-brain automated analysis of diffusion tensor imaging (DTI) data to compare differences in fractional anisotropy (FA) and mean diffusivity (MD) between the three clinical groups and healthy control subjects. Further analyses were conducted to assess the relationship between these putative indices of white matter microstructure and clinical measures of disease severity and symptoms. In PSP, relative to controls, changes in DTI indices consistent with white matter tract degeneration were identified in the corpus callosum, corona radiata, corticospinal tract, superior longitudinal fasciculus, anterior thalamic radiation, superior cerebellar peduncle, medial lemniscus, retrolenticular and anterior limb of the internal capsule, cerebral peduncle and external capsule bilaterally, as well as the left posterior limb of the internal capsule and the right posterior thalamic radiation. MSA patients also displayed differences in the body of the corpus callosum corticospinal tract, cerebellar peduncle, medial lemniscus, anterior and superior corona radiata, posterior limb of the internal capsule external capsule and cerebral peduncle bilaterally, as well as the left anterior limb of the internal capsule and the left anterior thalamic radiation. No significant white matter abnormalities were observed in the PD group. Across groups, MD correlated positively with disease severity in all major white matter tracts. These results show widespread changes in white matter tracts in both PSP and MSA patients, even at a mid-point in the disease process, which are not found in patients with PD.  相似文献   

9.
Successful socialization requires the ability of understanding of others’ mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.  相似文献   

10.
Alzheimeŕs disease (AD) represents the most prevalent neurodegenerative disorder that causes cognitive decline in old age. In its early stages, AD is associated with microstructural abnormalities in white matter (WM). In the current study, multiple indices of diffusion tensor imaging (DTI) and brain volumetric measurements were employed to comprehensively investigate the landscape of AD pathology. The sample comprised 58 individuals including cognitively normal subjects (controls), amnestic mild cognitive impairment (MCI) and AD patients. Relative to controls, both MCI and AD subjects showed widespread changes of anisotropic fraction (FA) in the corpus callosum, cingulate and uncinate fasciculus. Mean diffusivity and radial changes were also observed in AD patients in comparison with controls. After controlling for the gray matter atrophy the number of regions of significantly lower FA in AD patients relative to controls was decreased; nonetheless, unique areas of microstructural damage remained, e.g., the corpus callosum and uncinate fasciculus. Despite sample size limitations, the current results suggest that a combination of secondary and primary degeneration occurrs in MCI and AD, although the secondary degeneration appears to have a more critical role during the stages of disease involving dementia.  相似文献   

11.
12.

Introduction

Rolandic epilepsy (RE) is a childhood epilepsy with centrotemporal (rolandic) spikes, that is increasingly associated with language impairment. In this study, we tested for a white matter (connectivity) correlate, employing diffusion weighted MRI and language testing.

Methods

Twenty-three children with RE and 23 matched controls (age: 8–14 years) underwent structural (T1-weighted) and diffusion-weighted MRI (b = 1200 s/mm2, 66 gradient directions) at 3T, as well as neuropsychological language testing. Combining tractography and a cortical segmentation derived from the T1-scan, the rolandic tract were reconstructed (pre- and postcentral gyri), and tract fractional anisotropy (FA) values were compared between patients and controls. Aberrant tracts were tested for correlations with language performance.

Results

Several reductions of tract FA were found in patients compared to controls, mostly in the left hemisphere; the most significant effects involved the left inferior frontal (p = 0.005) and supramarginal (p = 0.004) gyrus. In the patient group, lower tract FA values were correlated with lower language performance, among others for the connection between the left postcentral and inferior frontal gyrus (p = 0.043, R = 0.43).

Conclusion

In RE, structural connectivity is reduced for several connections involving the rolandic regions, from which the epileptiform activity originates. Most of these aberrant tracts involve the left (typically language mediating) hemisphere, notably the pars opercularis of the inferior frontal gyrus (Broca’s area) and the supramarginal gyrus (Wernicke’s area). For the former, reduced language performance for lower tract FA was found in the patients. These findings provide a first microstructural white matter correlate for language impairment in RE.  相似文献   

13.
Tractography based on diffusion weighted imaging (DWI) data is a method for identifying the major white matter fascicles (tracts) in the living human brain. The health of these tracts is an important factor underlying many cognitive and neurological disorders. In vivo, tissue properties may vary systematically along each tract for several reasons: different populations of axons enter and exit the tract, and disease can strike at local positions within the tract. Hence quantifying and understanding diffusion measures along each fiber tract (Tract Profile) may reveal new insights into white matter development, function, and disease that are not obvious from mean measures of that tract. We demonstrate several novel findings related to Tract Profiles in the brains of typically developing children and children at risk for white matter injury secondary to preterm birth. First, fractional anisotropy (FA) values vary substantially within a tract but the Tract FA Profile is consistent across subjects. Thus, Tract Profiles contain far more information than mean diffusion measures. Second, developmental changes in FA occur at specific positions within the Tract Profile, rather than along the entire tract. Third, Tract Profiles can be used to compare white matter properties of individual patients to standardized Tract Profiles of a healthy population to elucidate unique features of that patient''s clinical condition. Fourth, Tract Profiles can be used to evaluate the association between white matter properties and behavioral outcomes. Specifically, in the preterm group reading ability is positively correlated with FA measured at specific locations on the left arcuate and left superior longitudinal fasciculus and the magnitude of the correlation varies significantly along the Tract Profiles. We introduce open source software for automated fiber-tract quantification (AFQ) that measures Tract Profiles of MRI parameters for 18 white matter tracts. With further validation, AFQ Tract Profiles have potential for informing clinical management and decision-making.  相似文献   

14.

Background

White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects.

Methods

Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years).

Results

CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects.

Conclusion

The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.  相似文献   

15.
Abnormalities in the white matter microstructure of the attentional system have been implicated in the aetiology of attention deficit hyperactivity disorder (ADHD). Diffusion tensor imaging (DTI) is a promising magnetic resonance imaging (MRI) technology that has increasingly been used in studies of white matter microstructure in the brain. The main objective of this work was to perform an exploratory analysis of white matter tracts in a sample of children with ADHD versus typically developing children (TDC). For this purpose, 13 drug-naive children with ADHD of both genders underwent MRI using DTI acquisition methodology and tract-based spatial statistics. The results were compared to those of a sample of 14 age- and gender-matched TDC. Lower fractional anisotropy was observed in the splenium of the corpus callosum, right superior longitudinal fasciculus, bilateral retrolenticular part of the internal capsule, bilateral inferior fronto-occipital fasciculus, left external capsule and posterior thalamic radiation (including right optic radiation). We conclude that white matter tracts in attentional and motor control systems exhibited signs of abnormal microstructure in this sample of drug-naive children with ADHD.  相似文献   

16.
Reliable prediction and diagnosis of concussion is important for its effective clinical management. Previous model-based studies largely employ peak responses from a single element in a pre-selected anatomical region of interest (ROI) and utilize a single training dataset for injury prediction. A more systematic and rigorous approach is necessary to scrutinize the entire white matter (WM) ROIs as well as ROI-constrained neural tracts. To this end, we evaluated injury prediction performances of the 50 deep WM regions using predictor variables based on strains obtained from simulating the 58 reconstructed American National Football League head impacts. To objectively evaluate performance, repeated random subsampling was employed to split the impacts into independent training and testing datasets (39 and 19 cases, respectively, with 100 trials). Univariate logistic regressions were conducted based on training datasets to compute the area under the receiver operating characteristic curve (AUC), while accuracy, sensitivity, and specificity were reported based on testing datasets. Two tract-wise injury susceptibilities were identified as the best overall via pair-wise permutation test. They had comparable AUC, accuracy, and sensitivity, with the highest values occurring in superior longitudinal fasciculus (SLF; 0.867–0.879, 84.4–85.2, and 84.1–84.6%, respectively). Using metrics based on WM fiber strain, the most vulnerable ROIs included genu of corpus callosum, cerebral peduncle, and uncinate fasciculus, while genu and main body of corpus callosum, and SLF were among the most vulnerable tracts. Even for one un-concussed athlete, injury susceptibility of the cingulum (hippocampus) right was elevated. These findings highlight the unique injury discriminatory potentials of computational models and may provide important insight into how best to incorporate WM structural anisotropy for investigation of brain injury.  相似文献   

17.
Human neuroimaging studies and animal models have suggested that white matter damage from ischemic stroke leads to the functional and structural reorganization of perilesional and remote brain regions. However, the quantitative relationship between the transcallosal tract integrity and clinical motor performance score after stroke remains unexplored. The current study employed a tract-based spatial statistics (TBSS) analysis on diffusion tensor imaging (DTI) to investigate the relationship between white matter diffusivity changes and the clinical scores in stroke patients. Probabilistic fiber tracking was also used to identify structural connectivity patterns in the patients. Thirteen ischemic stroke patients and fifteen healthy control subjects participated in this study. TBSS analyses showed that the corpus callosum (CC) and bilateral corticospinal tracts (CST) in the stroke patients exhibited significantly decreased fractional anisotropy and increased axial and radial diffusivity compared with those of the controls. Correlation analyses revealed that the motor and neurological deficit scores in the stroke patients were associated with the value of diffusivity indices in the CC. Compared with the healthy control group, probabilistic fiber tracking analyses revealed that significant changes in the inter-hemispheric fiber connections between the left and right motor cortex in the stroke patients were primarily located in the genu and body of the CC, left anterior thalamic radiation and inferior fronto-occipital fasciculus, bilateral CST, anterior/superior corona radiate, cingulum and superior longitudinal fasciculus, strongly suggesting that ischemic induces inter-hemispheric network disturbances and disrupts the white matter fibers connecting motor regions. In conclusion, the results of the present study show that DTI-derived measures in the CC can be used to predict the severity of motor skill and neurological deficit in stroke patients. Changes in structural connectivity pattern tracking between the left and right motor areas, particularly in the body of the CC, might reflect functional reorganization and behavioral deficit.  相似文献   

18.
Bipolar disorder (BD) is associated with signs of widespread disruption of white matter (WM) integrity. A polymorphism in the promoter of the serotonin transporter (5‐HTTLPR) influenced functional cortico‐limbic connectivity in healthy subjects and course of illness in BD, with the short (s) allele being associated with lower functional connectivity, and with earlier onset of illness and poor response to treatment. We tested the effects of 5‐HTTLPR on diffusion tensor imaging (DTI) measures of WM microstructure in 140 inpatients, affected by a major depressive episode in course of BD, of Italian descent. We used whole brain tract‐based spatial statistics in the WM skeleton with threshold‐free cluster enhancement of DTI measures of WM microstructure: axial, radial and mean diffusivity and fractional anisotropy. Compared with l/l homozygotes, 5‐HTTLPR*s carriers showed significantly increased radial and mean diffusivity in several brain WM tracts, including corpus callosum, cingulum bundle, uncinate fasciculus, corona radiata, thalamic radiation, inferior and superior longitudinal fasciculus and inferior fronto‐occipital fasciculus. An increase of mean and radial diffusivity, perpendicular to the main axis of the WM tract, is thought to signify increased space between fibers, thus suggesting demyelination or dysmyelination, or loss of bundle coherence. The effects of 5‐HTTLPR on the anomalous emotional processing in BD might be mediated by changes of WM microstructure in key WM tracts contributing to the functional integrity of the brain.  相似文献   

19.

Introduction

Lacunar lesions (LLs) and white matter lesions (WMLs) affect cognition. We assessed whether lesions located in specific white matter tracts were associated with cognitive performance taking into account total lesion burden.

Methods

Within the Second Manifestations of ARTerial disease Magnetic Resonance (SMART-MR) study, cross-sectional analyses were performed on 516 patients with manifest arterial disease. We applied an assumption-free voxel-based lesion-symptom mapping approach to investigate the relation between LL and WML locations on 1.5 Tesla brain MRI and compound scores of executive functioning, memory and processing speed. Secondly, a multivariable linear regression model was used to relate the regional volume of LLs and WMLs within specific white matter tracts to cognitive functioning.

Results

Voxel-based lesion-symptom mapping identified several clusters of voxels with a significant correlation between WMLs and executive functioning, mostly located within the superior longitudinal fasciculus and anterior thalamic radiation. In the multivariable linear regression model, a statistically significant association was found between regional LL volume within the superior longitudinal fasciculus and anterior thalamic radiation and executive functioning after adjustment for total LL and WML burden.

Conclusion

These findings identify the superior longitudinal fasciculus and anterior thalamic radiation as key anatomical structures in executive functioning and emphasize the role of strategically located vascular lesions in vascular cognitive impairment.  相似文献   

20.
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror’s regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号