首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
Nephrotic syndrome (NS), the association of gross proteinuria, hypoalbuminaemia, edema, and hyperlipidemia, can be clinically divided into steroid-sensitive (SSNS) and steroid-resistant (SRNS) forms. SRNS regularly progresses to end-stage renal failure. By homozygosity mapping and whole exome sequencing, we here identify recessive mutations in Crumbs homolog 2 (CRB2) in four different families affected by SRNS. Previously, we established a requirement for zebrafish crb2b, a conserved regulator of epithelial polarity, in podocyte morphogenesis. By characterization of a loss-of-function mutation in zebrafish crb2b, we now show that zebrafish crb2b is required for podocyte foot process arborization, slit diaphragm formation, and proper nephrin trafficking. Furthermore, by complementation experiments in zebrafish, we demonstrate that CRB2 mutations result in loss of function and therefore constitute causative mutations leading to NS in humans. These results implicate defects in podocyte apico-basal polarity in the pathogenesis of NS.  相似文献   

2.
Zhou TB  Qin YH  Su LN  Lei FY  Huang WF  Zhao YJ 《PloS one》2011,6(5):e19599

Background

The results from the published studies on the association between angiotensin-converting enzyme (ACE) insertion/deletion (I/D) gene polymorphism and the treatment response to steroid in Asian children with idiopathic nephrotic syndrome (INS) is still conflicting. This meta-analysis was performed to evaluate the relation between ACE I/D gene polymorphism and treatment response to steroid in Asian children and to explore whether ACE D allele or DD genotype could become a predictive marker for steroid responsiveness.

Methodology/Principal Findings

Association studies were identified from the databases of PubMed, Embase, Cochrane Library and CBM-disc (China Biological Medicine Database) as of September 1, 2010, and eligible investigations were synthesized using meta-analysis method. Five investigations were identified for the analysis of association between ACE I/D gene polymorphism and steroid-resistant nephrotic syndrome (SRNS) risk in Asian children and seven studies were included to explore the relationship between ACE I/D gene polymorphism and steroid-sensitive nephrotic syndrome (SSNS) susceptibility. Five investigations were recruited to explore the difference of ACE I/D gene distribution between SRNS and SSNS. There was no a markedly association between D allele or DD genotype and SRNS susceptibility or SSNS risk, and the gene distribution differences of ACE between SRNS and SSNS were not statistically significant. II genotype might play a positive role against SRNS onset but not for SSNS (OR = 0.51, P = 0.02; OR = 0.95, P = 0.85; respectively), however, the result for the association of II genotype with SRNS risk was not stable.

Conclusions/Significance

Our results indicate that D allele or DD homozygous can''t become a significant genetic molecular marker to predict the treatment response to steroid in Asian children with INS.  相似文献   

3.

Background

Mutations in the NPHS1 and NPHS2 genes are among the main causes of early-onset and familial steroid resistant nephrotic syndrome respectively. This study was carried out to assess the frequencies of mutations in these two genes in a cohort of Pakistani pediatric NS patients.

Methods

Mutation analysis was carried out by direct sequencing of the NPHS1 and NPHS2 genes in 145 nephrotic syndrome (NS) patients. This cohort included 36 samples of congenital or infantile onset NS cases and 39 samples of familial cases obtained from 30 families.

Results

A total of 7 homozygous (6 novel) mutations were found in the NPHS1 gene and 4 homozygous mutations in the NPHS2 gene. All mutations in the NPHS1 gene were found in the early onset cases. Of these, one patient has a family history of NS. Homozygous p.R229Q mutation in the NPHS2 gene was found in two children with childhood-onset NS.

Conclusions

Our results show a low prevalence of disease causing mutations in the NPHS1 (22% early onset, 5.5% overall) and NPHS2 (3.3% early onset and 3.4% overall) genes in the Pakistani NS children as compared to the European populations. In contrast to the high frequency of the NPHS2 gene mutations reported for familial SRNS in Europe, no mutation was found in the familial Pakistani cases. To our knowledge, this is the first comprehensive screening of the NPHS1 and NPHS2 gene mutations in sporadic and familial NS cases from South Asia.  相似文献   

4.
To investigate the association of endothelial nitric oxide synthase gene intron 4 (eNOS4) polymorphisms with nephrotic syndrome, the eNOS4 genotypes were assessed in 161 children with nephrotic syndrome in comparison with 78 healthy subjects. We classified the children with nephritic syndrome into 2 groups: as steroid-sensitive nephrotic syndrome (SSNS) (n = 125) and steroid-resistant nephrotic syndrome (SRNS) (n = 36). The eNOS4 polymorphisms were analyzed by polymerase chain reaction. The frequencies of eNOS4 aa, ab and bb genotypes were 3%, 31%, and 66% in all the nephrotic syndrome groups, and 1%, 23%, and 76% in the control group (x2 = 2.87, p > 0.05). In addition, the frequencies of eNOS4 aa, ab and bb genotypes were 2%, 33%, and 65% in SSNS group, and 5%, 28%, and 67% in the SRNS group (x2 = 1.13, p = 0.567). The present study is the first to investigate eNOS4 gene polymorphisms in children with SSNS and SRNS. Our data show that the eNOS4 gene polymorphisms were not associated with the development, frequent relapse and response to steroid in nephritic syndrome.  相似文献   

5.
6.
Tain YL  Chen TY  Yang KD 《Cytokine》2003,21(3):155-159
The cause of childhood nephrotic syndrome (NS) is unknown and whether it responds to steroid therapy remains unpredictable. In the present study, we measured the Th1/Th2 cytokines, serum tumor necrosis factor-beta (TNF-beta) and interleukin-13 (IL-13), levels in children with NS before and after prednisolone (60 mg/m(2)/day) treatment for 4 weeks, to evaluate their relationships with disease activity and treatment response. Patients with acute NS had higher serum TNF-beta and IL-13 levels than normal controls. After 4 weeks of prednisolone treatment, patients with steroid-resistant NS (SRNS) presented a higher serum TNF-beta level than that before treatment (p=0.008). In contrast, patients with steroid-sensitive NS (SSNS) presented a higher serum IL-13 level than that before treatment (p=0.027). This study demonstrates the significance of serum TNF-beta and IL-13 levels in relation to the disease activity and treatment response of childhood NS. Patients with SRNS appeared to have elevated TNF-beta after steroid therapy, while patients with SSNS tended to have elevated IL-13 after steroid therapy. Thus, an altered Th1/Th2 reaction as demonstrated by TNF-beta/IL-13 imbalance may play a pathophysiologic role in childhood NS.  相似文献   

7.
Although more than 2,400 genes have been shown to contain variants that cause Mendelian disease, there are still several thousand such diseases yet to be molecularly defined. The ability of new whole-genome sequencing technologies to rapidly indentify most of the genetic variants in any given genome opens an exciting opportunity to identify these disease genes. Here we sequenced the whole genome of a single patient with the dominant Mendelian disease, metachondromatosis (OMIM 156250), and used partial linkage data from her small family to focus our search for the responsible variant. In the proband, we identified an 11 bp deletion in exon four of PTPN11, which alters frame, results in premature translation termination, and co-segregates with the phenotype. In a second metachondromatosis family, we confirmed our result by identifying a nonsense mutation in exon 4 of PTPN11 that also co-segregates with the phenotype. Sequencing PTPN11 exon 4 in 469 controls showed no such protein truncating variants, supporting the pathogenicity of these two mutations. This combination of a new technology and a classical genetic approach provides a powerful strategy to discover the genes responsible for unexplained Mendelian disorders.  相似文献   

8.

Background

Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML) are autosomal dominant developmental disorders. NS and NSML are caused by abnormalities in genes that encode proteins related to the RAS-MAPK pathway, including PTPN11, RAF1, BRAF, and MAP2K. In this study, we diagnosed ten NS or NSML patients via targeted sequencing or whole exome sequencing (TS/WES).

Methods

TS/WES was performed to identify mutations in ten Chinese patients who exhibited the following manifestations: potential facial dysmorphisms, short stature, congenital heart defects, and developmental delay. Sanger sequencing was used to confirm the suspected pathological variants in the patients and their family members.

Results

TS/WES revealed three mutations in the PTPN11 gene, three mutations in RAF1 gene, and four mutations in BRAF gene in the NS and NSML patients who were previously diagnosed based on the abovementioned clinical features. All the identified mutations were determined to be de novo mutations. However, two patients who carried the same mutation in the RAF1 gene presented different clinical features. One patient with multiple lentigines was diagnosed with NSML, while the other patient without lentigines was diagnosed with NS. In addition, a patient who carried a hotspot mutation in the BRAF gene was diagnosed with NS instead of cardiofaciocutaneous syndrome (CFCS).

Conclusions

TS/WES has emerged as a useful tool for definitive diagnosis and accurate genetic counseling of atypical cases. In this study, we analyzed ten Chinese patients diagnosed with NS and related disorders and identified their correspondingPTPN11, RAF1, and BRAF mutations. Among the target genes, BRAF showed the same degree of correlation with NS incidence as that of PTPN11 or RAF1.
  相似文献   

9.
Nephrotic syndrome (NS) is a kidney disease predominantly present in children with idiopathic condition; final stage of the disease progresses into end-stage renal disease. Generally, NS is treated using standard steroid therapy, however; most of the children are steroid sensitive and about 15–20% are non-responders (SRNS). Non-responsiveness of these children would be a risk with the possibility of mutational changes in podocyte genes (NPHS1, NPHS2, WT1, PLCE1). The mutation in podocyte genes is associated with SRNS. NPHS1, NPHS2, and WT1 genes are identified/directly linked to SRNS. The present study is a surveillance on the mutation analysis of WT1 (exons 8 and 9) and NPHS2 (exons 1–8) gene in SRNS followed by clinical management. In the present study, we analyzed these two genes in a total of 117 SRNS (73 boys and 44 girls) children. A total of five mutations were detected in six children. First, WT1 mutation was detected at 9th intron-IVS 9 + 4C > T position in one SRNS female patient. This WT1 mutation was identified in a girl having Frasier Syndrome (FS) with focal segmental glomerulosclerosis and a complete sex reversal found through molecular and karyological screening. In NPHS2, missense mutations of P20L (in two children), P316S, and p.R229Q, and a frame shift mutation of 42delG were detected. Thus, applying molecular investigation helped us to decide on treatment plan of SRNS patients, mainly to avoid unnecessary immunosuppressive treatment.  相似文献   

10.
Inherited deafness has been shown to have high genetic heterogeneity. For many decades, linkage analysis and candidate gene approaches have been the main tools to elucidate the genetics of hearing loss. However, this associated study design is costly, time-consuming, and unsuitable for small families. This is mainly due to the inadequate numbers of available affected individuals, locus heterogeneity, and assortative mating. Exome sequencing has now become technically feasible and a cost-effective method for detection of disease variants underlying Mendelian disorders due to the recent advances in next-generation sequencing (NGS) technologies. In the present study, we have combined both the Deafness Gene Mutation Detection Array and exome sequencing to identify deafness causative variants in a large Chinese composite family with deaf by deaf mating. The simultaneous screening of the 9 common deafness mutations using the allele-specific PCR based universal array, resulted in the identification of the 1555A>G in the mitochondrial DNA (mtDNA) 12S rRNA in affected individuals in one branch of the family. We then subjected the mutation-negative cases to exome sequencing and identified novel causative variants in the MYH14 and WFS1 genes. This report confirms the effective use of a NGS technique to detect pathogenic mutations in affected individuals who were not candidates for classical genetic studies.  相似文献   

11.

Background

Retinal dystrophies (RD) are a group of hereditary diseases that lead to debilitating visual impairment and are usually transmitted as a Mendelian trait. Pathogenic mutations can occur in any of the 100 or more disease genes identified so far, making molecular diagnosis a rather laborious process. In this work we explored the use of whole exome sequencing (WES) as a tool for identification of RD mutations, with the aim of assessing its applicability in a diagnostic context.

Methodology/Principal Findings

We ascertained 12 Spanish families with seemingly recessive RD. All of the index patients underwent mutational pre-screening by chip-based sequence hybridization and resulted to be negative for known RD mutations. With the exception of one pedigree, to simulate a standard diagnostic scenario we processed by WES only the DNA from the index patient of each family, followed by in silico data analysis. We successfully identified causative mutations in patients from 10 different families, which were later verified by Sanger sequencing and co-segregation analyses. Specifically, we detected pathogenic DNA variants (∼50% novel mutations) in the genes RP1, USH2A, CNGB3, NMNAT1, CHM, and ABCA4, responsible for retinitis pigmentosa, Usher syndrome, achromatopsia, Leber congenital amaurosis, choroideremia, or recessive Stargardt/cone-rod dystrophy cases.

Conclusions/Significance

Despite the absence of genetic information from other family members that could help excluding nonpathogenic DNA variants, we could detect causative mutations in a variety of genes known to represent a wide spectrum of clinical phenotypes in 83% of the patients analyzed. Considering the constant drop in costs for human exome sequencing and the relative simplicity of the analyses made, this technique could represent a valuable tool for molecular diagnostics or genetic research, even in cases for which no genotypes from family members are available.  相似文献   

12.
Noonan syndrome (NS) is an autosomal dominant disorder caused by activating mutations in the PTPN11 gene encoding Shp2, which manifests in congenital heart disease, short stature, and facial dysmorphia. The complexity of Shp2 signaling is exemplified by the observation that LEOPARD syndrome (LS) patients possess inactivating PTPN11 mutations yet exhibit similar symptoms to NS. Here, we identify “protein zero-related” (PZR), a transmembrane glycoprotein that interfaces with the extracellular matrix to promote cell migration, as a major hyper-tyrosyl-phosphorylated protein in mouse and zebrafish models of NS and LS. PZR hyper-tyrosyl phosphorylation is facilitated in a phosphatase-independent manner by enhanced Src recruitment to NS and LS Shp2. In zebrafish, PZR overexpression recapitulated NS and LS phenotypes. PZR was required for zebrafish gastrulation in a manner dependent upon PZR tyrosyl phosphorylation. Hence, we identify PZR as an NS and LS target. Enhanced PZR-mediated membrane recruitment of Shp2 serves as a common mechanism to direct overlapping pathophysiological characteristics of these PTPN11 mutations.  相似文献   

13.
Previous studies have demonstrated that the genetic variations of glucocorticoid receptor gene (NR3C1) are associated with both familial steroid resistance and acquired steroid resistance in some diseases, such as Cushing's disease, leukemia, lupus nephritis, and female pseudohermaphroditism. In this study, we examined the genetic variations of NR3C1 in 35 children with sporadic steroid-resistant nephrotic syndrome (SRNS), and in 83 cases with sporadic steroid-sensitive NS (SSNS) using polymerase chain reaction, denaturing high-performance liquid chromatography and DNA sequencing, and analyzed possible associations between NR3C1 variants and steroid resistance in sporadic NS. No causative mutations were found; however, six previously identified and six novel polymorphisms, 1206C > T, 1374A > G, 2382C > T, 2193T > G, IVS7-68_-63delAAAAAA, and IVS8-9C > G, were detected. Two novel haplotypes, [1374A > G; IVS7-68_-63delAAAAAA; IVS8-9C > G; 2382C > T] and [1896C > T; 2166C > T; 2430T > C], of NR3C1 were also identified in sporadic NS and controls. The odds ratios (95% Confidence Interval) for the two novel NR3C1 haplotypes in the sporadic nephrotic children at risk of steroid resistance were 4.970 (0.889-27.788) and 2.194 (0.764-6.306), respectively, but the association between NR3C1 haplotypes and steroid resistance was not significant. Further studies on the possible association between the two novel NR3C1 haplotypes and steroid resistance in sporadic NS in larger cohorts are required.  相似文献   

14.
Genetic factors, the most common etiology in severe to profound hearing loss, are one of the key determinants of Cochlear Implantation (CI) and Electric Acoustic Stimulation (EAS) outcomes. Satisfactory auditory performance after receiving a CI/EAS in patients with certain deafness gene mutations indicates that genetic testing would be helpful in predicting CI/EAS outcomes and deciding treatment choices. However, because of the extreme genetic heterogeneity of deafness, clinical application of genetic information still entails difficulties. Target exon sequencing using massively parallel DNA sequencing is a new powerful strategy to discover rare causative genes in Mendelian disorders such as deafness. We used massive sequencing of the exons of 58 target candidate genes to analyze 8 (4 early-onset, 4 late-onset) Japanese CI/EAS patients, who did not have mutations in commonly found genes including GJB2, SLC26A4, or mitochondrial 1555A>G or 3243A>G mutations. We successfully identified four rare causative mutations in the MYO15A, TECTA, TMPRSS3, and ACTG1 genes in four patients who showed relatively good auditory performance with CI including EAS, suggesting that genetic testing may be able to predict the performance after implantation.  相似文献   

15.
While genetic determinants strongly influence HDL cholesterol (HDLc) levels, most genetic causes underlying variation in HDLc remain unknown. We aimed to identify novel rare mutations with large effects in candidate genes contributing to extreme HDLc in humans, utilizing family-based Mendelian genetics. We performed next-generation sequencing of 456 candidate HDLc-regulating genes in 200 unrelated probands with extremely low (≤10th percentile) or high (≥90th percentile) HDLc. Probands were excluded if known mutations existed in the established HDLc-regulating genes ABCA1, APOA1, LCAT, cholesteryl ester transfer protein (CETP), endothelial lipase (LIPG), and UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GALNT2). We identified 93 novel coding or splice-site variants in 72 candidate genes. Each variant was genotyped in the proband’s family. Family-based association analyses were performed for variants with sufficient power to detect significance at P < 0.05 with a total of 627 family members being assessed. Mutations in the genes glucokinase regulatory protein (GCKR), RNase L (RNASEL), leukocyte immunoglobulin-like receptor 3 (LILRA3), and dynein axonemal heavy chain 10 (DNAH10) segregated with elevated HDLc levels in families, while no mutations associated with low HDLc. Taken together, we have identified mutations in four novel genes that may play a role in regulating HDLc levels in humans.  相似文献   

16.
Target exon resequencing using Massively Parallel DNA Sequencing (MPS) is a new powerful strategy to discover causative genes in rare Mendelian disorders such as deafness. We attempted to identify genomic variations responsible for deafness by massive sequencing of the exons of 112 target candidate genes. By the analysis of 216randomly selected Japanese deafness patients (120 early-onset and 96 late-detected), who had already been evaluated for common genes/mutations by Invader assay and of which 48 had already been diagnosed, we efficiently identified causative mutations and/or mutation candidates in 57 genes. Approximately 86.6% (187/216) of the patients had at least one mutation. Of the 187 patients, in 69 the etiology of the hearing loss was completely explained. To determine which genes have the greatest impact on deafness etiology, the number of mutations was counted, showing that those in GJB2 were exceptionally higher, followed by mutations in SLC26A4, USH2A, GPR98, MYO15A, COL4A5 and CDH23. The present data suggested that targeted exon sequencing of selected genes using the MPS technology followed by the appropriate filtering algorithm will be able to identify rare responsible genes including new candidate genes for individual patients with deafness, and improve molecular diagnosis. In addition, using a large number of patients, the present study clarified the molecular epidemiology of deafness in Japanese. GJB2 is the most prevalent causative gene, and the major (commonly found) gene mutations cause 30–40% of deafness while the remainder of hearing loss is the result of various rare genes/mutations that have been difficult to diagnose by the conventional one-by-one approach. In conclusion, target exon resequencing using MPS technology is a suitable method to discover common and rare causative genes for a highly heterogeneous monogenic disease like hearing loss.  相似文献   

17.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 14 genes, but they collectively account for only 60% of all PCD. To identify mutations that cause PCD, we performed exome sequencing on six unrelated probands with ciliary outer dynein arm (ODA) defects. Mutations in CCDC114, an ortholog of the Chlamydomonas reinhardtii motility gene DCC2, were identified in a family with two affected siblings. Sanger sequencing of 67 additional individuals with PCD with ODA defects from 58 families revealed CCDC114 mutations in 4 individuals in 3 families. All 6 individuals with CCDC114 mutations had characteristic oto-sino-pulmonary disease, but none had situs abnormalities. In the remaining 5 individuals with PCD who underwent exome sequencing, we identified mutations in two genes (DNAI2, DNAH5) known to cause PCD, including an Ashkenazi Jewish founder mutation in DNAI2. These results revealed that mutations in CCDC114 are a cause of ciliary dysmotility and PCD and further demonstrate the utility of exome sequencing to identify genetic causes in heterogeneous recessive disorders.  相似文献   

18.
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive tubular disorder characterized by excessive renal magnesium and calcium excretion and chronic kidney failure. This rare disease is caused by mutations in the CLDN16 and CLDN19 genes. These genes encode the tight junction proteins claudin-16 and claudin-19, respectively, which regulate the paracellular ion reabsortion in the kidney. Patients with mutations in the CLDN19 gene also present severe visual impairment. Our goals in this study were to examine the clinical characteristics of a large cohort of Spanish patients with this disorder and to identify the disease causing mutations. We included a total of 31 patients belonging to 27 unrelated families and studied renal and ocular manifestations. We then analyzed by direct DNA sequencing the coding regions of CLDN16 and CLDN19 genes in these patients. Bioinformatic tools were used to predict the consequences of mutations. Clinical evaluation showed ocular defects in 87% of patients, including mainly myopia, nystagmus and macular colobomata. Twenty two percent of patients underwent renal transplantation and impaired renal function was observed in another 61% of patients. Results of the genetic analysis revealed CLDN19 mutations in all patients confirming the clinical diagnosis. The majority of patients exhibited the previously described p.G20D mutation. Haplotype analysis using three microsatellite markers showed a founder effect for this recurrent mutation in our cohort. We also identified four new pathogenic mutations in CLDN19, p.G122R, p.I41T, p.G75C and p.G75S. A strategy based on microsequencing was designed to facilitate the genetic diagnosis of this disease. Our data indicate that patients with CLDN19 mutations have a high risk of progression to chronic renal disease.  相似文献   

19.

Background

Isoniazid (INH) is a highly effective antibiotic central for the treatment of Mycobacterium tuberculosis (MTB). INH-resistant MTB clinical isolates are frequently mutated in the katG gene and the inhA promoter region, but 10 to 37% of INH-resistant clinical isolates have no detectable alterations in currently known gene targets associated with INH-resistance. We aimed to identify novel genes associated with INH-resistance in these latter isolates.

Methodology/Principal Findings

INH-resistant clinical isolates of MTB were pre-screened for mutations in the katG, inhA, kasA and ndh genes and the regulatory regions of inhA and ahpC. Twelve INH-resistant isolates with no mutations, and 17 INH-susceptible MTB isolates were subjected to whole genome sequencing. Phylogenetically related variants and synonymous mutations were excluded and further analysis revealed mutations in 60 genes and 4 intergenic regions associated with INH-resistance. Sanger sequencing verification of 45 genes confirmed that mutations in 40 genes were observed only in INH-resistant isolates and not in INH-susceptible isolates. The ratios of non-synonymous to synonymous mutations (dN/dS ratio) for the INH-resistance associated mutations identified in this study were 1.234 for INH-resistant and 0.654 for INH-susceptible isolates, strongly suggesting that these mutations are indeed associated with INH-resistance.

Conclusion

The discovery of novel targets associated with INH-resistance described in this study may potentially be important for the development of improved molecular detection strategies.  相似文献   

20.

Background

Amino acid substitutions in the target enzyme Erg11p of azole antifungals contribute to clinically-relevant azole resistance in Candida albicans. A simple molecular method for rapid detection of ERG11 gene mutations would be an advantage as a screening tool to identify potentially-resistant strains and to track their movement. To complement DNA sequencing, we developed a padlock probe and rolling circle amplification (RCA)-based method to detect a series of mutations in the C. albicans ERG11 gene using "reference" azole-resistant isolates with known mutations. The method was then used to estimate the frequency of ERG11 mutations and their type in 25 Australian clinical C. albicans isolates with reduced susceptibility to fluconazole and in 23 fluconazole-susceptible isolates. RCA results were compared DNA sequencing.

Results

The RCA assay correctly identified all ERG11 mutations in eight "reference" C. albicans isolates. When applied to 48 test strains, the RCA method showed 100% agreement with DNA sequencing where an ERG11 mutation-specific probe was used. Of 20 different missense mutations detected by sequencing in 24 of 25 (96%) isolates with reduced fluconazole susceptibility, 16 were detected by RCA. Five missense mutations were detected by both methods in 18 of 23 (78%) fluconazole-susceptible strains. DNA sequencing revealed that mutations in non-susceptible isolates were all due to homozygous nucleotide changes. With the exception of the mutations leading to amino acid substitution E266D, those in fluconazole-susceptible strains were heterozygous. Amino acid substitutions common to both sets of isolates were D116E, E266D, K128T, V437I and V488I. Substitutions unique to isolates with reduced fluconazole susceptibility were G464 S (n = 4 isolates), G448E (n = 3), G307S (n = 3), K143R (n = 3) and Y123H, S405F and R467K (each n = 1). DNA sequencing revealed a novel substitution, G450V, in one isolate.

Conclusion

The sensitive RCA assay described here is a simple, robust and rapid (2 h) method for the detection of ERG11 polymorphisms. It showed excellent concordance with ERG11 sequencing and is a potentially valuable tool to track the emergence and spread of azole-resistant C. albicans and to study the epidemiology of ERG11 mutations. The RCA method is applicable to the study of azole resistance in other fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号