共查询到20条相似文献,搜索用时 15 毫秒
1.
Chunmei Piao Lun Cai Shulan Qiu Lixin Jia Wenchao Song Jie Du 《The Journal of biological chemistry》2015,290(17):10667-10676
Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. 相似文献
2.
Chi‐Pin Lee Srinivasan Nithiyanantham Hui‐Ting Hsu Kun‐Tu Yeh Tzer‐Min Kuo Ying‐Chin Ko 《Journal of cellular and molecular medicine》2019,23(11):7699-7708
ALPK1 is associated with chronic kidney disease, gout and type 2 diabetes mellitus. Raised renal ALPK1 level in patients with diabetes was reported. Accelerated fibrotic nephropathies were observed in hyperglycaemic mice with up‐regulated ALPK1. The aim of this study was to identify the mediators contributing to ALPK1 effect involving in nephropathies induction. The haematoxylin and eosin staining, Masson's trichrome and immunohistochemical analysis of ALPK1, NFkB, CCL2 and CCL5 were performed in the mice kidney. Cytokine antibody array analysis was performed in streptozotocin‐treated wild‐type mice (WT‐STZ) and streptozotocin‐treated ALPK1 transgenic mice (TG‐STZ). The ALPK1 levels were measured in mice kidney and in cultured cells. We found that the higher levels of renal CCL2/MCP‐1, CCL5/Rantes and G‐CSF expression in TG‐STZ compared with the WT‐STZ. Glucose increased ALPK1 expressions in monocytic THP1 and human kidney‐2 cells. The protein expression of ALPK1, NFkB and lectin was up‐regulated in glucose‐treated HK‐2 cells. Knockdown of ALPK1 reduced CCL2 and CCL5 mRNA levels, whereas overexpressed ALPK1 increased CCL2 and CCL5 in cultured kidney cells. Taken together, these results show that high glucose increases ALPK1 and chemokine levels in the kidney. Elevated ALPK1 expression enhances renal CCL2 and CCL5 expressions in vivo and in vitro. ALPK1 is a mediator for CCL2 and CCL5 chemokine up‐regulation involving in diabetic nephropathies induction. 相似文献
3.
4.
5.
6.
7.
8.
Jongsung Lee Jienny Lee Eunsun Jung Young-Soo Kim Kyungbaeg Roh Kyung-Hwan Jung Deokhoon Park 《The Journal of biological chemistry》2010,285(42):32647-32656
Adipocyte dysfunction is strongly associated with the development of obesity, which is a major risk factor for many disorders, including diabetes, hypertension, and heart disease. This study shows that ultraviolet A (UVA) inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells and its action mechanisms. The mRNA levels of peroxidase proliferator-activated receptor (PPAR) γ and CCAAT/enhancer-binding protein α (C/EBPα), but not CCAAT/enhancer-binding protein ((C/EBP) β and δ, were reduced by UVA. Moreover, the mRNA levels of PPAR γ target genes (lipoprotein lipase (LPL), CD36, adipocyte protein (aP2), and liver X receptor α (LXR)) were down-regulated by UVA. Additionally, attempts to elucidate a possible mechanism underlying the UVA-mediated effects revealed that UVA induced migration inhibitory factor (MIF) gene expression, and this was mediated through activation of AP-1 (especially JNK and p42/44 MAPK) and nuclear factor-κB. In addition, reduced adipogenesis by UVA was recovered upon the treatment with anti-MIF antibodies. AMP-activated protein kinase phosphorylation and up-regulation of Kruppel-like factor 2 (KLF2) were induced by UVA. Taken together, these findings suggest that the inhibition of adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by UVA occurs primarily through the reduced expression of PPAR γ, which is mediated by up-regulation of KLF2 via the activation of MIF-AMP-activated protein kinase signaling. 相似文献
9.
10.
11.
12.
Beata Lontay Khaldon Bodoor Douglas H. Weitzel David Loiselle Christopher Fortner Szabolcs Lengyel Donghai Zheng James Devente Robert Hickner Timothy A. J. Haystead 《The Journal of biological chemistry》2010,285(38):29357-29366
Pregnancy coordinately alters the contractile properties of both vascular and uterine smooth muscles reducing systemic blood pressure and maintaining uterine relaxation. The precise molecular mechanisms underlying these pregnancy-induced adaptations have yet to be fully defined but are likely to involve changes in the expression of proteins regulating myosin phosphorylation. Here we show that smoothelin like protein 1 (SMTNL1) is a key factor governing sexual development and pregnancy induced adaptations in smooth and striated muscle. A primary target gene of SMTNL1 in these muscles is myosin phosphatase-targeting subunit 1 (MYPT1). Deletion of SMTNL1 increases expression of MYPT1 30–40-fold in neonates and during development expression of both SMTNL1 and MYPT1 increases over 20-fold. Pregnancy also regulates SMTNL1 and MYPT1 expression, and deletion SMTNL1 greatly exaggerates expression of MYPT1 in vascular smooth muscle, producing a profound reduction in force development in response to phenylephrine as well as sensitizing the muscle to acetylcholine. We also show that MYPT1 is expressed in Type2a muscle fibers in mice and humans and its expression is regulated during pregnancy, suggesting unrecognized roles in mediating skeletal muscle plasticity in both species. Our findings define a new conserved pathway in which sexual development and pregnancy mediate smooth and striated muscle adaptations through SMTNL1 and MYPT1. 相似文献
13.
14.
Andrew N. Bankston Wenqi Li Hui Zhang Li Ku Guanglu Liu Filomena Papa Lixia Zhao James A. Bibb Franca Cambi Seema K. Tiwari-Woodruff Yue Feng 《The Journal of biological chemistry》2013,288(25):18047-18057
Cyclin-dependent kinase 5 (Cdk5) plays key roles in normal brain development and function. Dysregulation of Cdk5 may cause neurodegeneration and cognitive impairment. Besides the well demonstrated role of Cdk5 in neurons, emerging evidence suggests the functional requirement of Cdk5 in oligodendroglia (OL) and CNS myelin development. However, whether neurons and OLs employ similar or distinct mechanisms to regulate Cdk5 activity remains elusive. We report here that in contrast to neurons that harbor high levels of two Cdk5 activators, p35 and p39, OLs express abundant p39 but negligible p35. In addition, p39 is selectively up-regulated in OLs during differentiation along with elevated Cdk5 activity, whereas p35 expression remains unaltered. Specific knockdown of p39 by siRNA significantly attenuates Cdk5 activity and OL differentiation without affecting p35. Finally, expression of p39, but not p35, is increased during myelin repair, and remyelination is impaired in p39−/− mice. Together, these results reveal that neurons and OLs harbor distinct preference of Cdk5 activators and demonstrate important functions of p39-dependent Cdk5 activation in OL differentiation during de novo myelin development and myelin repair. 相似文献
15.
16.
17.
Michael R. Epis Keith M. Giles Felicity C. Kalinowski Andrew Barker Ronald J. Cohen Peter J. Leedman 《The Journal of biological chemistry》2012,287(42):35251-35259
The enzyme deoxyhypusine hydroxylase (DOHH) catalyzes the activation of eukaryotic translation initiation factor (eIF5A), a protein essential for cell growth. Using bioinformatic predictions and reporter gene assays, we have identified a 182-nt element within the DOHH 3′-untranslated region (3′-UTR) that contains a number of target sites for miR-331-3p and miR-642-5p. Quantitative RT-PCR studies demonstrated overexpression of DOHH mRNA and underexpression of miR-331-3p and miR-642-5p in several prostate cancer cell lines compared with normal prostate epithelial cells. Transient overexpression of miR-331-3p and/or miR-642-5p in DU145 prostate cancer cells reduced DOHH mRNA and protein expression and inhibited cell proliferation. We observed synergistic growth inhibition with the combination of miR-331-3p and miR-642-5p and mimosine, a pharmacological DOHH inhibitor. Finally, we identified a significant inverse relationship between the expression of miR-331-3p or miR-642-5p and DOHH in a cohort of human prostate cancer tissues. Our results suggest a novel role for miR-331-3p and miR-642-5p in the control of prostate cancer cell growth via the regulation of DOHH expression and eIF5A activity. 相似文献
18.
Reddy SD Pakala SB Molli PR Sahni N Karanam NK Mudvari P Kumar R 《The Journal of biological chemistry》2012,287(33):27843-27850
19.
Guobin Yang Guohua Yuan Wenduo Ye Ken W. Y. Cho YiPing Chen 《The Journal of biological chemistry》2014,289(45):31492-31502
Bone morphogenetic protein (BMP) signaling plays an essential role in early tooth development, evidenced by disruption of BMP signaling leading to an early arrested tooth development. Despite being a central mediator of BMP canonical signaling pathway, inactivation of Smad4 in dental mesenchyme does not result in early developmental defects. In the current study, we investigated the mechanism of receptor-activated Smads (R-Smads) and Smad4 in the regulation of the odontogenic gene Msx1 expression in the dental mesenchyme. We showed that the canonical BMP signaling is not operating in the early developing tooth, as assessed by failed activation of the BRE-Gal transgenic allele and the absence of phospho-(p)Smad1/5/8-Smad4 complexes. The absence of pSmad1/5/8-Smad4 complex appeared to be the consequence of saturation of Smad4 by pSmad2/3 in the dental mesenchyme as knockdown of Smad2/3 or overexpression of Smad4 led to the formation of pSmad1/5/8-Smad4 complexes and activation of canonical BMP signaling in dental mesenchymal cells. We showed that Smad1/5 but not Smad4 are required for BMP-induced expression of Msx1 in dental mesenchymal cells. We further presented evidence that in the absence of Smad4, BMPs are still able to induce pSmad1/5/8 nuclear translocation and their binding to the Msx1 promoter directly in dental mesenchymal cells. Our results demonstrate the functional operation of an atypical canonical BMP signaling (Smad4-independent and Smad1/5/8-dependent) pathway in the dental mesenchyme during early odontogenesis, which may have general implication in the development of other organs. 相似文献
20.
Huan Long Shanting Zhao Ting Lei Jichao Han Jihong Yuan Yanmei Qi 《Animal biotechnology》2013,24(3):133-143
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase homologue attributed to the mitotic cyclin-dependent kinase family. Both the kinase activity and the biological effects of CDK5 in central nervous system are mainly dependent on association with its regulatory subunit 1 known as CDK5R1 (p35). In the present study, the full-length coding regions of CDK5 and CDK5R1 were cloned from pigs. Radiation hybrid mapping localized porcine CDK5 to chromosome 18q12-13, whereas CDK5R1 was electro-localized to chromosome 12q12. Real-time quantitative RT-PCR (qRT-PCR) showed that CDK5 mRNA is ubiquitously present in all porcine tissues examined, with relatively high levels in cerebral cortex, cerebellum, testicle and lung. We also examined the expression profile of porcine CDK5/CDK5R1 in various tissues at different developmental stages. The results indicated that CDK5 mRNA reaches the highest level in cerebral cortex at two months of age and in cerebellum and liver at 4 months of age, respectively, whereas the peak level of CDK5R1 was observed in both cerebral cortex and cerebellum at two months of age, indicating the pivotal role of CDK5/CDK5R1 during the development of porcine brain. 相似文献