首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level.

Results

In total, we identified 73 genes in B. rapa as orthologs of 41 anthocyanin biosynthetic genes in A. thaliana. In B. rapa, the anthocyanin biosynthetic genes (ABGs) have expanded and most genes exist in more than one copy. The anthocyanin biosynthetic structural genes have expanded through whole genome and tandem duplication in B. rapa. More structural genes located upstream of the anthocyanin biosynthetic pathway have been retained than downstream. More negative regulatory genes are retained in the anthocyanin biosynthesis regulatory system of B. rapa.

Conclusions

These results will promote an understanding of the genetic mechanism of anthocyanin biosynthesis, as well as help the improvement of the nutritional quality of B. rapa through the breeding of high anthocyanin content varieties.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-426) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

LIM (Lin-11, Isl-1 and Mec-3 domains) genes have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly, in higher plants; however, the stress resistance related functions of these genes are still not well known. In this study, we collected 22 LIM genes designated as Brassica rapa LIM (BrLIM) from the Brassica database, analyzed the sequences, compared them with LIM genes of other plants and analyzed their expression after applying biotic and abiotic stresses in Chinese cabbage.

Results

Upon sequence analysis these genes were confirmed as LIM genes and found to have a high degree of homology with LIM genes of other species. These genes showed distinct clusters when compared to other recognized LIM proteins upon phylogenetic analysis. Additionally, organ specific expression of these genes was observed in Chinese cabbage plants, with BrPLIM2a, b, c, BrDAR1, BrPLIM2e, f and g only being expressed in flower buds. Furthermore, the expression of these genes (except for BrDAR1 and BrPLIM2e) was high in the early flowering stages. The remaining genes were expressed in almost all organs tested. All BrDAR genes showed higher expression in flower buds compared to other organs. These organ specific expressions were clearly correlated with the phylogenetic grouping. In addition, BrWLIM2c and BrDAR4 responded to Fusarium oxysporum f. sp. conglutinans infection, while commonly two BrDARs and eight BrLIMs responded to cold, ABA and pH (pH5, pH7 and pH9) stress treatments in Chinese cabbage plants.

Conclusion

Taken together, the results of this study indicate that BrLIM and BrDAR genes may be involved in resistance against biotic and abiotic stresses in Brassica.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-641) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background and Aims

Pollination is an important process in the life cycle of plants and is the first step in bringing together the male and female gametophytes for plant reproduction. While pollination has been studied for many years, accurate knowledge of the morphological aspects of this process is still far from complete. This study therefore focuses on a morphological characterization of pollination, using time-series image analysis of self- and cross-pollinations in Brassica rapa.

Methods

Time-lapse imaging of pollen behaviour during self- and cross-pollinations was recorded for 90 min, at 1 min intervals, using a stereoscopic microscope. Using time-series digital images of pollination, characteristic features of pollen behaviours during self- and cross-pollinations were studied.

Key Results

Pollen exhibited various behaviours in both self- and cross-pollinations, and these were classified into six representative patterns: germination, expansion, contraction, sudden contraction, pulsation and no change. It is noteworthy that in ‘contraction’ pollen grains shrunk within a short period of 30–50 min, and in ‘pulsation’ repeated expansion and contraction occurred with an interval of 10 min, suggesting that a dehydration system is operating in pollination. All of the six patterns were observed on an individual stigma with both self- and cross-pollinations, and the difference between self- and cross-pollinations was in the ratios of the different behaviours. With regard to water transport to and from pollen grains, this occurred in multiple steps, before, during and after hydration. Thus, pollination is regulated by a combination of multiple components of hydration, rehydration and dehydration systems.

Conclusions

Regulated hydration of pollen is a key process for both pollination and self-incompatibility, and this is achieved by a balanced complex of hydration, dehydration and nutrient supply to pollen grains from stigmatic papilla cells.  相似文献   

4.
Variation of glucosinolates in vegetable crops of Brassica rapa   总被引:1,自引:0,他引:1  
Glucosinolate levels in leaves were determined in a collection of 113 varieties of turnip greens (Brassica rapa L.) from northwestern Spain grown at two sites. Sensorial attributes were also assessed by a consumer panel. The objectives were to determine the diversity among varieties in total glucosinolate content and glucosinolate profile and to evaluate their sensory attributes in relation to glucosinolate content for breeding purposes. Sixteen glucosinolates were identified, being the aliphatic glucosinolates, gluconapin and glucobrassicanapin the most abundant. Other aliphatic glucosinolates, such as progoitrin, glucoalyssin, and gluconapoleiferin were relatively abundant in varieties with a different glucosinolate profile. Indolic and aromatic glucosinolate concentrations were low and showed few differences among varieties. Differences in total glucosinolate content, glucosinolate profile and bitterness were found among varieties, with a total glucosinolate content ranging from 11.8 to 74.0micromolg(-1) dw at one site and from 7.5 to 56.9micromolg(-1) dw at the other site. Sensory analysis comparing bitterness with variation in glucosinolate, gluconapin and glucobrassicanapin concentrations suggested that these compounds and their breakdown products are not the only determinants of the characteristic flavour of this vegetable. Other phytochemicals are probably involved on the characteristic bitter flavour. The varieties MBG-BRS0132, MBG-BRS0082, MBG-BRS0173, and MBG-BRS0184 could be good candidates for future breeding programs since they had high total glucosinolate content and good agronomic performance. The presence of glucoraphanin in some varieties should be studied more extensively, because this aliphatic glucosinolate is the precursor of sulforaphane, a potent anti-cancer isothiocyanate.  相似文献   

5.
Arabidopsis belongs to the Brassicaceae family and plays an important role as a model plant for which researchers have developed fine-tuned genome resources. Genome sequencing projects have been initiated for other members of the Brassicaceae family. Among these projects, research on Chinese cabbage (Brassica rapa subsp. pekinensis) started early because of strong interest in this species. Here, we report the development of a library of Chinese cabbage full-length cDNA clones, the RIKEN BRC B. rapa full-length cDNA (BBRAF) resource, to accelerate research on Brassica species. We sequenced 10 000 BBRAF clones and confirmed 5476 independent clones. Most of these cDNAs showed high homology to Arabidopsis genes, but we also obtained more than 200 cDNA clones that lacked any sequence homology to Arabidopsis genes. We also successfully identified several possible candidate marker genes for plant defence responses from our analysis of the expression of the Brassica counterparts of Arabidopsis marker genes in response to salicylic acid and jasmonic acid. We compared gene expression of these markers in several Chinese cabbage cultivars. Our BBRAF cDNA resource will be publicly available from the RIKEN Bioresource Center and will help researchers to transfer Arabidopsis-related knowledge to Brassica crops.  相似文献   

6.
Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species.  相似文献   

7.
8.
9.
The metabolomic analysis of Brassica rapa leaves treated with methyl jasmonate was performed using 2-dimensional J-resolved NMR spectroscopy combined with multivariate data analysis. The principal component analysis of the J-resolved NMR spectra showed discrimination between control and methyl jasmonate treated plants by principal components 1 and 2. While the level of glucose, sucrose and amino acids showed a decrease after methyl jasmonate treatment, hydroxycinnamates and glucosinolate were highly increased. Methyl jasmonate treatment resulted in a long-term accumulation of indole glucosinolate and indole-3-acetic acid, lasting up to 14 days after treatment. Malate conjugated hydroxycinnamates also exhibited an increase until 14 days after methyl jasmonate treatment, these compounds might play an important role in plant defence responses mediated by methyl jasmonate.  相似文献   

10.
Herbivory and disease can shape the evolution of plant populations, but their joint effects are rarely investigated. Families of plants of Brassica rapa (Brassicaceae) were grown from seeds collected in two naturalized populations in an experimental garden. We examined leaf infection by the fungus Alternaria, seed predation by a gall midge (Cecidomyiidae) and plant life-history traits. Plants from one population had heavier seeds, were more likely to flower, had less fungal infection, had more seed predation and were more fecund. Fungal infection score and seed predation rate increased with plant size, but large plants still had the greatest number of undamaged fruits. Spatial heterogeneity in the experimental garden was significant; seed predation rate and fecundity varied among blocks. An apparent tradeoff existed between susceptibility to disease and seed predation: plants with the highest fungal infection score had the lowest seed predation rate. Alternaria infection varied between populations, but the disease had no effect on fecundity. Seed predation did reduce fecundity. Damaged fruits had 31.4% fewer intact seeds. However, evidence for additive genetic variation in resistance to seed predation was weak. Therefore, neither disease nor seed predation was likely to be a strong agent of genetically based fecundity selection.  相似文献   

11.
Although boron (B) is a micronutrient essential for the growth of vascular plants, it reduces growth and seed yield when present in excessive amounts. A hydroponic assay of nineteen Brassica rapa genotypes resulted in the identification of two tolerant genotypes, WWY Sarson and Local at a range of boron concentrations (15–165 μM). The most tolerant and sensitive genotypes were assessed for shoot boron concentrations in a soil assay with 4, 29 and 54 mg B kg−1 soil. The soil assay confirmed the results of the hydroponic screening. Shoot boron uptake was at least three times lower and shoot boron concentrations about 10 times lower in the tolerant than sensitive genotypes, indicating that boron tolerance involved boron exclusion from the shoot.  相似文献   

12.

Background and Aims

Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution.

Methods

Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM).

Key Results

Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply.

Conclusions

The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.  相似文献   

13.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

14.
The impact of four mating designs on selection response for leaf area was assessed at four different population sizes, using fast-cycling Brassica rapa L. Mating designs were either balanced (partial diallel or pair mating) or unbalanced (factorial mating designs with either one or two testers). When balanced, the mating designs required different numbers of crossings for the same number of parents: the partial diallel design, in the configuration retained here, required three times as many crossings as pair mating. Population sizes were 4, 8, 16, and 32. The percentage of selected individuals was kept constant at 25%. Despite an average estimated heritability around 0.4, the overall response to selection after five generations was fairly weak in all three replicates. For a given population size, selection response was larger under balanced mating designs than under unbalanced ones. There was no difference among balanced mating designs. Both results indicate that effective population size is more important than population size or the number of crossings in maintaining genetic gain.  相似文献   

15.
Background and Aims Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species.Methods Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species.Key Results The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus.Conclusions Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment.  相似文献   

16.
Isolated microspore culture techniques are being widely used in Brassica breeding programs to generate haploid and doubled haploid plants. A number of factors influence regeneration response in vitro including genotype. In order to assess the effect of genotype on microspore embryogenesis in B. rapa L. var. oleifera, 17 cultivars and breeding lines were evaluated. Embryos developed from all but one genotype when using NLN medium with 17% sucrose, followed by a reduction in sucrose concentration to 10%, 48 h later. The number of embryos /100 buds differed between genotypes, ranging from 0 to 70. Further studies indicated that sucrose concentration and incubation time influenced embryogenesis. Selection studies carried out with an Agriculture and Agri-Food Canada breeding line have resulted in the identification of a highly embryogenic B. rapa line. This line produced thousands of microspore-derived embryos /100 buds and will be useful in mutant selection and gene transfer as well as biochemical and developmental studies.  相似文献   

17.
Construction of a detailed RFLP linkage map of B. rapa (syn. campestris) made it possible, for the first time, to study individual genes controlling quantitative traits in this species. Ninety-five F2 individuals from a cross of Chinese cabbage cv Michihili by Spring broccoli were analyzed for segregation at 220 RFLP loci and for variation in leaf, stem, and flowering characteristics. The number, location, and magnitude of genes underlying 28 traits were determined by using an interval mapping method. Zero to five putative quantitative trait loci (QTL) were detected for each of the traits examined. There were unequal gene effects on the expression of many traits, and the inheritance patterns of traits ranged from those controlled by a single major gene plus minor genes to those controlled by polygenes with small and similar effects. The effect of marker locus density on detection of QTL was analyzed, and the results showed that the number of QTL detected did not change when the number of marker loci used for QTL mapping was decreased from 220 to 126; however, a further reduction from 126 to 56 caused more than 15% loss of the total QTL detected. The detection of putative minor QTL by removing the masking effects of major QTL was explored.  相似文献   

18.
The corolla of Brassica rapa has an UV-absorbing zone in its center, known as the nectar guide for attracting pollinating insects. The pigment which plays the role of the nectar guide was isolated from the petals and identified to be isorhamnetin 3,7-O-di-beta-D-glucopyranoside on the basis of MS and NMR spectroscopic data. The D-, L-configurations of the sugar moieties were determined by the fluorometric HPLC method. In plants raised in open field, there was a 13-fold higher content of the compound in the basal parts of the petals compared with the apical parts. This difference in flavonoid content is presumed to contribute to the visual attractiveness of B. rapa flowers to insect pollinators.  相似文献   

19.
F2 progeny segregating for linolenic acid content were used to identify genes and develop markers for linolenic acid in spring turnip rape (Brassica rapa ssp. oleifera). A candidate gene approach applying the rapeseed fad3 gene and bulked segregant analysis with RAPD markers was used. A total of 27 markers were distributed in three linkage groups which each exhibited a QTL for linolenic acid. Jointly the three QTLs accounted for 73.5% of the variation in linolenic acid level in this population. The fad3 gene was mapped near one QTL controlling 23.5% of the variation. Allele-specific markers were developed for fad3 and can be used for marker-assisted selection in future spring turnip rape breeding programmes.  相似文献   

20.

Background and Aims

Spontaneous male sterility is an advantageous trait for both constructing efficient pollination control systems and for understanding the developmental process of the male reproductive unit in many crops. A triallelic genetic male-sterile locus (BnMs5) has been identified in Brassica napus; however, its complicated genome structure has greatly hampered the isolation of this locus. The aim of this study was to physically map BnMs5 through an integrated map-based cloning strategy and analyse the local chromosomal evolution around BnMs5.

Methods

A large F2 population was used to integrate the existing genetic maps around BnMs5. A map-based cloning strategy in combination with comparative mapping among B. napus, Arabidopsis, Brassica rapa and Brassica oleracea was employed to facilitate the identification of a target bacterial artificial chromosome (BAC) clone covering the BnMs5 locus. The genomic sequences from the Brassica species were analysed to reveal the regional chromosomal evolution around BnMs5.

Key Results

BnMs5 was finally delimited to a 0·3-cM genetic fragment from an integrated local genetic map, and was anchored on the B. napus A8 chromosome. Screening of a B. napus BAC clone library and identification of the positive clones validated that JBnB034L06 was the target BAC clone. The closest flanking markers restrict BnMs5 to a 21-kb region on JBnB034L06 containing six predicted functional genes. Good collinearity relationship around BnMs5 between several Brassica species was observed, while violent chromosomal evolutionary events including insertions/deletions, duplications and single nucleotide mutations were also found to have extensively occurred during their divergence.

Conclusions

This work represents major progress towards the molecular cloning of BnMs5, as well as presenting a powerful, integrative method to mapping loci in plants with complex genomic architecture, such as the amphidiploid B. napus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号