首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many processes have been described in the control of shoot branching. Apical dominance is defined as the control exerted by the shoot tip on the outgrowth of axillary buds, whereas correlative inhibition includes the suppression of growth by other growing buds or shoots. The level, signaling, and/or flow of the plant hormone auxin in stems and buds is thought to be involved in these processes. In addition, RAMOSUS (RMS) branching genes in pea (Pisum sativum) control the synthesis and perception of a long-distance inhibitory branching signal produced in the stem and roots, a strigolactone or product. Auxin treatment affects the expression of RMS genes, but it is unclear whether the RMS network can regulate branching independently of auxin. Here, we explore whether apical dominance and correlative inhibition show independent or additive effects in rms mutant plants. Bud outgrowth and branch lengths are enhanced in decapitated and stem-girdled rms mutants compared with intact control plants. This may relate to an RMS-independent induction of axillary bud outgrowth by these treatments. Correlative inhibition was also apparent in rms mutant plants, again indicating an RMS-independent component. Treatments giving reductions in RMS1 and RMS5 gene expression, auxin transport, and auxin level in the main stem were not always sufficient to promote bud outgrowth. We suggest that this may relate to a failure to induce the expression of cytokinin biosynthesis genes, which always correlated with bud outgrowth in our treatments. We present a new model that accounts for apical dominance, correlative inhibition, RMS gene action, and auxin and cytokinin and their interactions in controlling the progression of buds through different control points from dormancy to sustained growth.  相似文献   

2.
3.
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.  相似文献   

4.
To provide insight into the regulatory roles of auxin and cytokininin endosperm development, defective kernel (dek) mutants ofmaize (Zea mays L.) were examined. The mutants dek6, dek18 anddek 26 had substantially lower indole-3-acetic acid (IAA) levelsthan wild-type counterparts while dek8, dek12 dek24 had higherIAA levels than wild-type counterparts. The mutant dek6 hada somewhat lower zeatin level than its wild-type counterpart.The mutation-induced changes in IAA levels and effects of exogenously-appliedauxin were not consistently related to changes in numbers ofnuclei per endorsperm; however, there was a correspondence betweenauxin level in endosperm and nuclear diameter, which is proportionalto the extent of post-mitotic DNA synthesis (endoreduplication).We conclude that auxin may be involved in stimulating endoreduplication.Copyright1993, 1999 Academic Press Zea mays L., maize, defective kernel mutant, dek, auxin, cytokinin, hormone, ELISA, cell number, cell division, endopolyploidy, endoreduplication, DNA amplification  相似文献   

5.
6.
7.
8.
The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS.  相似文献   

9.
植物茎分枝的分子调控   总被引:4,自引:0,他引:4  
植物茎分枝结构决定了不同植物的不同形态结构.本文从腋生分生组织的发生、腋芽的生长两个方面综述了近年来植物分枝发生发育相关的分子机理研究及其进展.发现在不同植物中腋分生组织形成的基本机制是相似的,LS(lateral suppressor)及其同源基因在不同植物中都参与腋生分生组织的形成,而BL(blind)及其同源基因也参与调控腋生分生组织的形成.腋生分生组织的形成可能也是受激素调控的.目前,对腋芽生长的分子调控机制的认识主要集中于生长素通过二级信使的作用调控腋芽的生长.而生长素调控腋芽生长的机制已经较为清楚的有两条途径:一是生长素通过抑制细胞分裂素合成来调控腋芽的生长;另一途径是一种类胡萝卜素衍生的信号物质参与生长素的运输调控(MAX途径)来调控腋芽的生长.最新研究表明,TB1的拟南芥同源基因在MAX途径的下游负调控腋芽的生长.此外,增强表达OsNAC2也促进腋芽的生长.  相似文献   

10.
Conditional Mutants of Meiosis in Yeast   总被引:11,自引:9,他引:11       下载免费PDF全文
Three temperature-sensitive mutants, spo1-1, spo2-1, and spo3-1, were characterized with respect to their behavior in sporulation medium at a restrictive temperature. The time of expression of the functions defective in the mutants was determined by temperature-shift experiments during the sporulation process. In addition, each mutant was examined for the following: (i) its ability to undergo the nuclear divisions of meiosis; (ii) deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis; (iii) protein turnover; and (iv) colony-forming ability after exposure to sporulation medium. Mutant spo1-1 is defective in a function which confers a temperature-sensitive period which extends over 32% of the sporulation cycle. The temperature-sensitive period of mutant spo2-1 occupies 34% of the cycle, whereas the temperature-sensitive period of mutant spo3-1 extends over 2% of the sporulation cycle. Cytological evidence indicates that all three mutants initiate but do not complete the meiotic nuclear divisions. The DNA content of sporulation cultures of mutants spo1-1 and spo3-1 did not increase to the wild-type level; DNA synthesis in spo2-1 was normal. All three strains exhibit a loss of colony-forming ability during incubation in sporulation medium at the restrictive temperature. RNA and protein synthesis and protein turnover occur in the mutants.  相似文献   

11.
Cytokinin/Auxin Control of Apical Dominance in Ipomoea nil   总被引:3,自引:0,他引:3  
Although the concept of apical dominance control by the ratioof cytokinin to auxin is not new, recent experimentation withtransgenic plants has given this concept renewed attention.In the present study, it has been demonstrated that cytokinintreatments can partially reverse the inhibitory effect of auxinon lateral bud outgrowth in intact shoots of Ipomoea nil. Althoughless conclusive, this also appeared to occur in buds of isolatednodes. Auxin inhibited lateral bud outgrowth when applied eitherto the top of the stump of the decapitated shoot or directlyto the bud itself. However, the fact that cytokinin promotiveeffects on bud outgrowth are known to occur when cytokinin isapplied directly to the bud suggests different transport tissuesand/or sites of action for the two hormones. Cytokinin antagonistswere shown in some experiments to have a synergistic effectwith benzyladenine on the promotion of bud outgrowth. If theratio of cytokinin to auxin does control apical dominance, thenthe next critical question is how do these hormones interactin this correlative process? The hypothesis that shoot-derivedauxin inhibits lateral bud outgrowth indirectly by depletingcytokinin content in the shoots via inhibition of its productionin the roots was not supported in the present study which demonstratedthat the repressibility of lateral bud outgrowth by auxin treatmentsat various positions on the shoot was not correlated with proximityto the roots but rather with proximity to the buds. Resultsalso suggested that auxin in subtending mature leaves as wellas that in the shoot apex and adjacent small leaves may contributeto the apical dominance of a shoot. (Received September 24, 1996; Accepted March 16, 1997)  相似文献   

12.
Three cytokinin-over-producing mutants of the moss, Physcomitrella patens, have been shown to convert [8-14C]adenine to N6-[14C](Δ2-isopentenyl)adenine, the presence of which was confirmed by thin layer chromatography, high performance liquid chromatography, and recrystallization to constant specific radioactivity. The labeled cytokinin was detected in the culture medium within 6 hours and the tissue itself appears to contain both labeled N6-(Δ2-isopentenyl)adenine and N6-(Δ2-isopentenyl)adenosine monophosphate.  相似文献   

13.
The phytohormones auxin and cytokinin interact to regulate many plant growth and developmental processes. Elements involved in the biosynthesis, inactivation, transport, perception, and signaling of these hormones have been elucidated, revealing the variety of mechanisms by which signal output from these pathways can be regulated. Recent studies shed light on how these hormones interact with each other to promote and maintain plant growth and development. In this review, we focus on the interaction of auxin and cytokinin in several developmental contexts, including its role in regulating apical meristems, the patterning of the root, the development of the gynoecium and female gametophyte, and organogenesis and phyllotaxy in the shoot.  相似文献   

14.
Summary In this study, auxin (indole-3-acetic acid), gibberellin, cytokinin (zeatin) and abscisic acid production were investigated in the culture medium of the bacteria Proteus mirabilis, P. vulgaris, Klebsiella pneumoniae, Bacillus megaterium, B. cereus, Escherichia coli. To determine the levels of these plant growth regulators, high performance liquid chromatography (HPLC) technique was used. Our findings show that the bacteria used in this study synthesized the plant growth regulators, auxin, gibberellin, cytokinin and abscisic acid.  相似文献   

15.
16.
Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced branching. Because auxin in the polar auxin transport stream (PATS) inhibits axillary bud outgrowth, its role in regulating the phyB branching phenotype was tested. Removing the main shoot PATS auxin source by decapitation or chemically inhibiting the PATS strongly stimulated branching in Arabidopsis (Arabidopsis thaliana) deficient in phyB, but had a modest effect in the wild type. Whereas indole-3-acetic acid (IAA) levels were elevated in young phyB seedlings, there was less IAA in mature stems compared with the wild type. A split plate assay of bud outgrowth kinetics indicated that low auxin levels inhibited phyB buds more than the wild type. Because the auxin response could be a result of either the auxin signaling status or the bud’s ability to export auxin into the main shoot PATS, both parameters were assessed. Main shoots of phyB had less absolute auxin transport capacity compared with the wild type, but equal or greater capacity when based on the relative amounts of native IAA in the stems. Thus, auxin transport capacity was unlikely to restrict branching. Both shoots of young phyB seedlings and mature stem segments showed elevated expression of auxin-responsive genes and expression was further increased by auxin treatment, suggesting that phyB suppresses auxin signaling to promote branching.The development of shoot branches is a multistep process with many potential points of regulation. After the formation of an axillary meristem in the leaf axil, an axillary bud may form through the generation of leaves and other tissues. The axillary bud may grow out to form a branch, or may remain dormant or semidormant for an indefinite period of time (Bennett and Leyser, 2006). In Arabidopsis (Arabidopsis thaliana), the position of the bud in the rosette is a strong determinant of its fate, with upper buds displaying greater outgrowth potential than lower buds. In fact, the varying potential of buds at different positions is maintained even in buds that are activated to form branches, with the upper buds growing out first and most robustly, and lower buds growing out after a time lag and with less vigor (Hempel and Feldman, 1994; Finlayson et al., 2010).The disparate fate of buds at different rosette positions is mediated, at least in part, by the process of correlative inhibition, whereby remote parts of the plant inhibit the outgrowth of the buds (Cline, 1997). Correlative inhibition is typically associated with the bud-inhibiting effects of auxin sourced in the shoot apex and transported basipetally in the polar auxin transport stream (PATS). Auxin in the PATS does not enter the bud and thus must act indirectly; however, the exact mechanism by which auxin inhibits bud outgrowth is not well understood, despite many years of intensive study (Waldie et al., 2010; Domagalska and Leyser, 2011). Evidence supports divergent models by which auxin may regulate branching. One model contends that the PATS modulates a bud outgrowth inhibiting second messenger (Brewer et al., 2009). Another model postulates a mechanism whereby competition between the main shoot and the axillary bud for auxin export in the PATS regulates bud activity (Bennett et al., 2006; Prusinkiewicz et al., 2009; Balla et al., 2011).In addition to intrinsic developmental programming, branching is also modulated by environmental signals, including competition signals generated by neighboring plants. The red light:far-red light ratio (R:FR) is an established competition signal that is modified (reduced) by neighboring plants and sensed by the phytochrome family of photoreceptors. A low R:FR evokes the shade avoidance syndrome with plants displaying, among other phenotypes, enhanced shoot elongation and reduced branching (Smith, 1995; Ballaré, 1999; Franklin and Whitelam, 2005; Casal, 2012). Phytochrome B (phyB) is the major sensor contributing to R:FR responses, and loss of phyB function results in a plant that displays a phenotype similar to constitutive shade avoidance. It should be noted that actual shade avoidance is mediated by additional phytochromes and that the complete absence of functional phyB in the loss-of-function mutant may also result in a phenotype that does not exactly mirror shade avoidance. Loss of phyB function leads to reduced branching and altered expression of genes associated with hormone pathways and bud development in the axillary buds (Kebrom et al., 2006; Finlayson et al., 2010; Kebrom et al., 2010; Su et al., 2011). In Arabidopsis, phyB deficiency differentially affects the outgrowth of buds from specific positions in the rosette and thus demonstrates an important function in the regulation of correlative inhibition (Finlayson et al., 2010; Su et al., 2011), a process known to be influenced by auxin. Many aspects of auxin signaling are dependent on AUXIN RESISTANT1 (AXR1), which participates in activating the Skip-Cullin-F-box auxin signaling module (del Pozo et al., 2002). Reduced auxin signaling resulting from AXR1 deficiency enabled phyB-deficient plants to branch profusely and reduced correlative inhibition, thus establishing auxin signaling downstream of phyB action (Finlayson et al., 2010). Although a link between auxin signaling and phyB regulation of branching was demonstrated, the details of the interaction were not discovered.The relationship between auxin and shade avoidance responses has been investigated in some detail. Auxin signaling was implicated in shade avoidance responses mediated by ARABIDOPSIS THALIANA HOMEOBOX PROTEIN2 in young Arabidopsis seedlings (Steindler et al., 1999). Rapid changes in leaf development resulting from canopy shade were also shown to involve TRANSPORT INHIBITOR RESPONSE1-dependent auxin signaling (Carabelli et al., 2007). A link between auxin abundance and the response to the R:FR was demonstrated in Arabidopsis deficient for the TRP AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) auxin biosynthetic enzyme (Tao et al., 2008). Young wild-type seedlings respond to a decreased R:FR by increasing indole-3-acetic acid (IAA) biosynthesis, accumulating IAA, increasing hypocotyl and petiole elongation, and increasing leaf elevation. However, these responses are reduced in plants deficient in TAA1. Subsequent studies confirmed the importance of auxin in responses to the R:FR (Pierik et al., 2009; Kozuka et al., 2010; Keller et al., 2011), and also identified the auxin transporter PIN-FORMED3 as essential for hypocotyl elongation responses in young seedlings (Keuskamp et al., 2010). In addition to the roles of auxin abundance and transport in the process, auxin sensitivity has also been implicated in shade avoidance. Several auxin signaling genes are direct targets of the phytochrome signaling component PHYTOCHROME INTERACTING FACTOR5 (PIF5), and these genes are misregulated in Arabidopsis deficient in either PHYTOCHROME INTERACTING FACTOR4 (PIF4) or PIF5 (Hornitschek et al., 2012; Sun et al., 2013). Auxin-responsive hypocotyl elongation and auxin-induced gene expression were also reduced in young seedlings of the pif4pif5 double mutant (Hornitschek et al., 2012), which show defects in shade avoidance responses (Lorrain et al., 2008).Although some aspects of the regulation of branching are now understood, there are still many gaps in our knowledge of the process, especially as related to the regulation of branching by light signals. Because auxin is known to play a major role in regulating branch development, and because recent studies have implicated auxin in general shade avoidance responses and specifically in the regulation of branching by phyB, the hypothesis that auxin homeostasis, transport, and/or signaling may contribute to the hypobranching phenotype of phyB-deficient plants was generated and tested, using a variety of physiological and molecular approaches.  相似文献   

17.
近年来,在植物激素的信号传导研究上已取得突破性进展.生长素的信号传导通路研究除了在生长素结合蛋白(ABP)上有所进展外,在生长素应答基因(Aux IAA),生长素调节因子(ARF)以及感应突变体的研究上也取得较大进展.对生长素运输通路及PIN1蛋白的功能和其抑制剂的研究也使对生长素信号传导的认识更清楚.生长素应答基因(Aux IAA)是生长素处理后快速诱导的基因.Aux IAA蛋白具有组织特异性(例如SAU蛋白)可以用来研究外源激素对植物生长发育的影响.生长素调节因子(ARF)与生长素应答基因的启动子序列具有特异性结合,Aux IAA蛋白与生长素调节因子(ARF)相互作用,并引发一系列蛋白质降解.使用转基因的拟南芥突变体,能有效地研究生长素在植物体内的特异性分布.借助运输载体抑制剂,可以对生长素的极性运输有更深入的了解.已经证明PIN蛋白参与生长素运输并与肌动蛋白有关.而且生长素参与了赤霉素介导的植物伸长反应.  相似文献   

18.
Plants continuously extend their root and shoot systems through the action of meristems at their growing tips. By regulating which meristems are active, plants adjust their body plans to suit local environmental conditions. The transport network of the phytohormone auxin has been proposed to mediate this systemic growth coordination, due to its self-organising, environmentally sensitive properties. In particular, a positive feedback mechanism termed auxin transport canalization, which establishes auxin flow from active shoot meristems (auxin sources) to the roots (auxin sinks), has been proposed to mediate competition between shoot meristems and to balance shoot and root growth. Here we provide strong support for this hypothesis by demonstrating that a second hormone, strigolactone, regulates growth redistribution in the shoot by rapidly modulating auxin transport. A computational model in which strigolactone action is represented as an increase in the rate of removal of the auxin export protein, PIN1, from the plasma membrane can reproduce both the auxin transport and shoot branching phenotypes observed in various mutant combinations and strigolactone treatments, including the counterintuitive ability of strigolactones either to promote or inhibit shoot branching, depending on the auxin transport status of the plant. Consistent with this predicted mode of action, strigolactone signalling was found to trigger PIN1 depletion from the plasma membrane of xylem parenchyma cells in the stem. This effect could be detected within 10 minutes of strigolactone treatment and was independent of protein synthesis but dependent on clathrin-mediated membrane trafficking. Together these results support the hypothesis that growth across the plant shoot system is balanced by competition between shoot apices for a common auxin transport path to the root and that strigolactones regulate shoot branching by modulating this competition.  相似文献   

19.
TOMLINSON  P. B. 《Annals of botany》1971,35(4):865-879
Seedlings of the palm Nypa fruticans van Wurmb are viviparous,the plumule becoming exserted before the fruit is ripe and possiblyassisting in fruit detachment. Established seedlings have horizontalaxes, this growth orientation being maintained throughout thelife of the palm which may be described as ‘rhizomatous’.Inflorescences are axillary in adult plants, but their distributionis irregular. The shoot apex is small and very asymmetricalsince it is more or less displaced into a lateral position byprogressive enlargement of each leaf primordium during thisleaf's first plastochrone. The plastochrone interval is apparentlya long one so that leaves have a wide developmental gap betweenthem. This results in a leaf base which is more or less cylindricalbut with a groove to accommodate the next youngest leaf. All the available evidence suggests that vegetative branchingis by equal dichotomy of the shoot apex at wide intervals. Thedichotomy is marked superficially by a leaf, enclosing the twonew shoots, which has two grooves. The twin shoots are insertedin the lateral, not the dorsiventral plane of this enclosingleaf. The daughter shoots are always at precisely the same stageof development and they always have mirror-image symmetry withrelation to each other, the phyllotaxis of the parent shootbeing maintained without obvious interruption. There is no anatomicalevidence for abortion of the original apex and its replacementby two new ones. The vascular system is divided equally betweeneach daughter shoot without interruption, suggesting stronglythat there is continuity of growth from the undivided to thedivided condition.  相似文献   

20.
Torosa-2 (to-2), a tomato mutant with strong apical dominance,was studied in order to determine the mechanism of shoot outgrowthcontrol. In decapitated or defoliated to-2 plants only a fewshoots grew and IAA or morphactin application had little oronly short term effects. No differences were found in auxinand cytokinin activities between normal and mutant plants upto 20 days after sowing. In the period from 40 to 90 days theIAA content increased equally in both genotypes. During thesame period, however, cytokinin increased only in normal plants.The results obtained with the to-2 mutant indicate that budsdo not shoot, probably because bud differentiation does notoccur. The ratio of auxin to cytokinin clearly was affectedby the low level of cytokinin in all tissues of the to-2 plants.This led us to the conclusion that insufficient quantities ofcytokinin for lateral bud differentiation is the cause of thestrong apical dominance in to-2. (Received January 20, 1982; Accepted April 26, 1982)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号