首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human genome and exome sequencing are powerful research tools that can generate secondary findings beyond the scope of the research. Most secondary genomic findings are of low importance, but some (for a current estimate of 1%–3% of individuals) confer high risk of a serious disease that could be mitigated by timely medical intervention. The impact and scope of secondary findings in genome and exome sequencing will only increase in the future. There is considerable agreement that high-impact findings should be returned to participants, but many researchers performing genomic research studies do not have the background, skills, or resources to identify, verify, interpret, and return such variants. Here, we introduce a proposal for the formation of a secondary-genomic-findings service (SGFS) that would support researchers by enabling the return of clinically actionable sequencing results to research participants in a standardized manner. We describe a proposed structure for such a centralized service and evaluate the advantages and challenges of the approach. We suggest that such a service would be of greater benefit to all parties involved than present practice, which is highly variable. We encourage research centers to consider the adoption of a centralized SGFS.  相似文献   

2.
The American College of Medical Genetics and Genomics (ACMG) recommends that clinical sequencing laboratories return secondary findings in 56 genes associated with medically actionable conditions. Our goal was to apply a systematic, stringent approach consistent with clinical standards to estimate the prevalence of pathogenic variants associated with such conditions using a diverse sequencing reference sample. Candidate variants in the 56 ACMG genes were selected from Phase 1 of the 1000 Genomes dataset, which contains sequencing information on 1,092 unrelated individuals from across the world. These variants were filtered using the Human Gene Mutation Database (HGMD) Professional version and defined parameters, appraised through literature review, and examined by a clinical laboratory specialist and expert physician. Over 70,000 genetic variants were extracted from the 56 genes, and filtering identified 237 variants annotated as disease causing by HGMD Professional. Literature review and expert evaluation determined that 7 of these variants were pathogenic or likely pathogenic. Furthermore, 5 additional truncating variants not listed as disease causing in HGMD Professional were identified as likely pathogenic. These 12 secondary findings are associated with diseases that could inform medical follow-up, including cancer predisposition syndromes, cardiac conditions, and familial hypercholesterolemia. The majority of the identified medically actionable findings were in individuals from the European (5/379) and Americas (4/181) ancestry groups, with fewer findings in Asian (2/286) and African (1/246) ancestry groups. Our results suggest that medically relevant secondary findings can be identified in approximately 1% (12/1092) of individuals in a diverse reference sample. As clinical sequencing laboratories continue to implement the ACMG recommendations, our results highlight that at least a small number of potentially important secondary findings can be selected for return. Our results also confirm that understudied populations will not reap proportionate benefits of genomic medicine, highlighting the need for continued research efforts on genetic diseases in these populations.  相似文献   

3.
The UK’s 100,000 Genomes Project has the aim of sequencing 100,000 genomes from UK National Health Service (NHS) patients while concomitantly transforming clinical care such that whole genome sequencing becomes routine clinical practice in the UK. Policymakers claim that the project will revolutionize NHS care. We wished to explore the 100,000 Genomes Project, and in particular, the extent to which policymaker claims have helped or hindered the work of those associated with Genomics England – the company established by the Department of Health to deliver the project. We interviewed 20 individuals linked to, or working for Genomics England. Interviewees had double-edged views about the context within which they were working. On the one hand, policymakers’ expectations attached to the venture were considered vacuous “genohype”; on the other hand, they were considered the impetus needed for those trying to advance genomic research into clinical practice. Findings should be considered for future genomes projects.  相似文献   

4.
The recent completion of the first two individual whole-genome sequences is a research milestone. As personal genome research advances, investigators and international research bodies must ensure ethical research conduct. We identify three major ethical considerations that have been implicated in whole-genome research: the return of research results to participants; the obligations, if any, that are owed to participants' relatives; and the future use of samples and data taken for whole-genome sequencing. Although the issues are not new, we discuss their implications for personal genomics and provide recommendations for appropriate management in the context of research involving individual whole-genome sequencing.  相似文献   

5.
In Australia, along with many other countries, limited guidance or other support strategies are currently available to researchers, institutional research ethics committees, and others responsible for making decisions about whether to return genomic findings with potential value to participants or their blood relatives. This lack of guidance results in onerous decision-making burdens—traversing technical, interpretative, and ethical dimensions—as well as uncertainty and inconsistencies for research participants. This article draws on a recent targeted consultation conducted by the Australian National Health and Medical Research Council to put forward strategies for supporting return of finding decision-making. In particular, we propose a pyramid of decision-making support: decision-making guidelines, technical and interpretative assistance, and ethical assistance for intractable “tough” cases. Each step of the pyramid involves an increasing level of regulatory involvement and applies to a smaller subsection of genomic research findings. Implementation of such strategies would facilitate a growing evidence base for return of finding decisions, thereby easing the financial, time, and moral burdens currently placed on researchers and other relevant decision-makers while also improving the quality of such decisions and, consequently, participant outcomes.  相似文献   

6.
Professional recommendations for the return of results from exome and whole-genome sequencing (ES/WGS) have been controversial. The lack of clear guidance about whether and, if so, how to return ES/WGS incidental results limits the extent to which individuals and families might benefit from ES/WGS. The perspectives of genetics professionals, particularly those at the forefront of using ES/WGS in clinics, are largely unknown. Data on stakeholder perspectives could help clarify how to weigh expert positions and recommendations. We conducted an online survey of 9,857 genetics professionals to learn their attitudes on the return of incidental results from ES/WGS and the recent American College of Medical Genetic and Genomics Recommendations for Reporting of Incidental Findings in Clinical Exome and Genome Sequencing. Of the 847 respondents, 760 completed the survey. The overwhelming majority of respondents thought that incidental ES/WGS results should be offered to adult patients (85%), healthy adults (75%), and the parents of a child with a medical condition (74%). The majority thought that incidental results about adult-onset conditions (62%) and carrier status (62%) should be offered to the parents of a child with a medical condition. About half thought that offered results should not be limited to those deemed clinically actionable. The vast majority (81%) thought that individual preferences should guide return. Genetics professionals’ perspectives on the return of ES/WGS results differed substantially from current recommendations, underscoring the need to establish clear purpose for recommendations on the return of incidental ES/WGS results as professional societies grapple with developing and updating recommendations.  相似文献   

7.
BackgroundHeart Healthy Lenoir is a transdisciplinary project aimed at creating long-term, sustainable approaches to reduce cardiovascular disease risk disparities in Lenoir County, North Carolina using a design spanning genomic analysis and clinical intervention. We hypothesized that residents of Lenoir County would be unfamiliar and mistrustful of genomic research, and therefore reluctant to participate; additionally, these feelings would be higher in African-Americans.MethodologyTo test our hypothesis, we conducted qualitative research using community-based participatory research principles to ensure our genomic research strategies addressed the needs, priorities, and concerns of the community. African-American (n = 19) and White (n = 16) adults in Lenoir County participated in four focus groups exploring perceptions about genomics and cardiovascular disease. Demographic surveys were administered and a semi-structured interview guide was used to facilitate discussions. The discussions were digitally recorded, transcribed verbatim, and analyzed in ATLAS.ti.

Results and Significance

From our analysis, key themes emerged: transparent communication, privacy, participation incentives and barriers, knowledge, and the impact of knowing. African-Americans were more concerned about privacy and community impact compared to Whites, however, African-Americans were still eager to participate in our genomic research project. The results from our formative study were used to improve the informed consent and recruitment processes by: 1) reducing misconceptions of genomic studies; and 2) helping to foster participant understanding and trust with the researchers. Our study demonstrates how community-based participatory research principles can be used to gain deeper insight into the community and increase participation in genomic research studies. Due in part to these efforts 80.3% of eligible African-American participants and 86.9% of eligible White participants enrolled in the Heart Healthy Lenoir Genomics study making our overall enrollment 57.8% African-American. Future research will investigate return of genomic results in the Lenoir community.  相似文献   

8.
《PloS one》2013,8(6)
The feasibility of using imperfectly phenotyped “silver standard” samples identified from electronic medical record diagnoses is considered in genetic association studies when these samples might be combined with an existing set of samples phenotyped with a gold standard technique. An analytic expression is derived for the power of a chi-square test of independence using either research-quality case/control samples alone, or augmented with silver standard data. The subset of the parameter space where inclusion of silver standard samples increases statistical power is identified. A case study of dementia subjects identified from electronic medical records from the Electronic Medical Records and Genomics (eMERGE) network, combined with subjects from two studies specifically targeting dementia, verifies these results.  相似文献   

9.
In 1995, the American Society of Human Genetics (ASHG) and American College of Medical Genetics and Genomics (ACMG) jointly published a statement on genetic testing in children and adolescents. In the past 20 years, much has changed in the field of genetics, including the development of powerful new technologies, new data from genetic research on children and adolescents, and substantial clinical experience. This statement represents current opinion by the ASHG on the ethical, legal, and social issues concerning genetic testing in children. These recommendations are relevant to families, clinicians, and investigators. After a brief review of the 1995 statement and major changes in genetic technologies in recent years, this statement offers points to consider on a broad range of test technologies and their applications in clinical medicine and research. Recommendations are also made for record and communication issues in this domain and for professional education.  相似文献   

10.
Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families.  相似文献   

11.
Background:An important challenge with the application of next-generation sequencing technology is the possibility of uncovering incidental genomic findings. A paucity of evidence on personal utility for incidental findings has hindered clinical guidelines. Our objective was to estimate personal utility for complex information derived from incidental genomic findings.Methods:We used a discrete-choice experiment to evaluate participants’ personal utility for the following attributes: disease penetrance, disease treatability, disease severity, carrier status and cost. Study participants were drawn from the Canadian public. We analyzed the data with a mixed logit model.Results:In total, 1200 participants completed our questionnaire (available in English and French). Participants valued receiving information about high-penetrance disorders but expressed disutility for receiving information on low-penetrance disorders. The average willingness to pay was $445 (95% confidence interval [CI] $322–$567) to receive incidental findings in a scenario where clinicians returned information about high-penetrance, medically treatable disorders, but only 66% of participants (95% CI 63%–71%) indicated that they would choose to receive information in that scenario. On average, participants placed an important value ($725, 95% CI $600–$850) on having a choice about what type of findings they would receive, including receipt of information about high-penetrance, treatable disorders or receipt of information about high-penetrance disorders with or without available treatment. The predicted uptake of that scenario was 76% (95% CI 72%–79%).Interpretation:Most participants valued receiving incidental findings, but personal utility depended on the type of finding, and not all participants wanted to receive incidental results, regardless of the potential health implications. These results indicate that to maximize benefit, participant-level preferences should inform the decision about whether to return incidental findings.Clinical genomic sequencing technologies are on the verge of allowing individualized care at reasonable cost.1 Patients and their families will soon receive information from clinical sequencing that has implications for clinical care, including information on consequences related to disease prognosis, treatment response or hereditary risk for disease.2 Clinical sequencing can also generate incidental findings, which are clinically relevant genetic variants for disorders unrelated to the reason for ordering the genetic testing. The decision of whether to provide information about incidental findings is complex because such results will have varying clinical validity (whether the genetic variant causes the disorder) and utility (whether effective medical treatment is available for the disorder).3,4 For example, although effective medical treatment may be available for some validated incidental findings, other incidental findings may not be validated as causing the disorder, and still others will be validated but not associated with effective treatment options.To address in part the challenges surrounding the return of incidental findings, the American College of Medical Genetics and Genomics published recommendations for reporting incidental findings from clinical sequencing.5 The statement lists a minimum of 56 genes that laboratories should examine, with results reported to patients through the managing physician. This list includes genes with high-penetrance mutations (i.e., a high proportion of individuals with the mutation will exhibit clinical symptoms) validated to be associated with disorders for which medical interventions are available.The original version of this statement did not “favour offering the patient a preference” for which results would be returned. The reasoning was that clinicians have a duty to prevent potential harm by telling patients about incidental findings. The working group that developed the recommendations further stated that it is impractical to provide the level of genetic counselling required for informed preference on all potential disorders.5 As such, the working group recommended that clinicians discuss with patients the possibility of receiving incidental findings from the list. It was argued that patient autonomy is preserved because patients can decline clinical sequencing if they prefer to not receive information about incidental findings.5 However, this rationale has been subject to debate because of its “all-or-none” nature, whereby patients must agree to receive information about incidental findings or clinical sequencing is not provided.69 In April 2014, in response to the ongoing debate, the statement was amended to include an “opt-out” option for patients who do not want to receive information about incidental findings.10Notwithstanding the ethical debate, there is a lack of quantitative, preference-based economic evidence for the return of incidental genomic findings.8 It has been argued8 that this gap in evidence hindered development of the working group’s recommendation statement. More generally, evidence on preferences for the return of incidental findings is crucial for health policy, for health systems planning and for informing future lists that may include “many more genes.”8 We aimed to generate evidence on the personal utility that study participants from the Canadian public ascribe to the return of incidental genomic findings in the clinical setting. We chose participants from the general public because the public is the largest stakeholder in Canada’s publicly funded health care system.  相似文献   

12.
13.
Chromosomal abnormalities provide clinical utility in the diagnosis and treatment of hematologic malignancies, and may be predictive of malignant transformation in individuals without apparent clinical presentation of a hematologic cancer. In an effort to confirm previous reports of an association between clonal mosaicism and incident hematologic cancer, we applied the anomDetectBAF algorithm to call chromosomal anomalies in genotype data from previously conducted Genome Wide Association Studies (GWAS). The genotypes were initially collected from DNA derived from peripheral blood of 12,176 participants in the Group Health electronic Medical Records and Genomics study (eMERGE) and the Women’s Health Initiative (WHI). We detected clonal mosaicism in 169 individuals (1.4%) and large clonal mosaic events (>2 mb) in 117 (1.0%) individuals. Though only 9.5% of clonal mosaic carriers had an incident diagnosis of hematologic cancer (multiple myeloma, myelodysplastic syndrome, lymphoma, or leukemia), the carriers had a 5.5-fold increased risk (95% CI: 3.3–9.3; p-value = 7.5×10−11) of developing these cancers subsequently. Carriers of large mosaic anomalies showed particularly pronounced risk of subsequent leukemia (HR = 19.2, 95% CI: 8.9–41.6; p-value = 7.3×10−14). Thus we independently confirm the association between detectable clonal mosaicism and hematologic cancer found previously in two recent publications.  相似文献   

14.
Wendler D  Grady C 《Bioethics》2008,22(4):203-208
To give valid informed consent to participate in clinical research, potential participants should understand the risks, potential benefits, procedures, and alternatives. Potential participants also should understand that they are being invited to participate in research. Yet it is unclear what potential participants need to understand to satisfy this particular requirement. As a result, it is unclear what additional information investigators should disclose about the research; and it is also unclear when failures of understanding in this respect undermine the validity of potential participants' informed consent. An analysis of individuals' interests suggests that potential participants need to understand three additional facts to understand that they are being invited to participate in research: 1) research contribution : those who enroll in the study will be contributing to a project designed to gather generalizable knowledge to benefit others in the future; 2) research relationship : the investigators will rely on participants' efforts to gather the generalizable knowledge to benefit others; and 3) research impact : the extent to which participating in the study will alter what participants do and what happens to them.  相似文献   

15.
《Translational oncology》2020,13(9):100799
Limited research has indicated that despite their overwhelming interest in tumor molecular profiling (MP),1 cancer patients have poor knowledge about MP. The current study aimed to investigate demographic and psychological predictors of knowledge and perceived importance of MP in an advanced cancer patient cohort. Eligible participants had advanced solid cancers of any histological type with sufficient accessible tissue for MP and were enrolled in the Molecular Screening and Therapeutics (MoST) Program. A questionnaire was completed by 1074 participants (91% response rate) after consent, prior to undergoing MP. Overall, participants had poor to moderate knowledge of MP, yet perceived MP to have high importance. Higher education, speaking English at home, and greater satisfaction with the decision to undergo MP were associated with higher knowledge scores. More negative attitudes towards uncertainty, greater self-efficacy to cope with results, and lower perceived likelihood of cancer progression were associated with greater perceived importance of MP. Less educated participants and those who do not speak English at home will need clear explanations, visual aids and ample opportunity to ask questions about MP at the time of their decision-making. Clinicians also need to consider psychological factors relevant to patients' decision to pursue MP. Given the increased awareness of and demand for cancer genomic information and the rapidly changing nature of the actionability of MP, these findings will help inform an important ongoing debate on how to facilitate ethical and informed consent and manage patient expectations about personalized treatments.  相似文献   

16.
The recent National Research Council report, Future Biotechnology Research on the International Space Station, evaluates NASA's plans for research in cell science and protein crystal growth to be conducted on the International Space Station. This report concludes that the NASA biotechnology programs have the potential to significantly impact relevant scientific fields and to increase understanding and insight into fundamental biological issues. In order to realize the potential impacts, NASA must focus its research programs by selecting specific questions related to gravitational forces' role in cell behavior and by using the microgravity environment as a tool to determine the structure of macromolecules with important biological implications. Given the time and volume constraints associated with space-based experiments, instrumentation to be used on the space station must be designed to maximize the productivity of researchers, and NASA's recruitment of investigators and support for space station experiments should aim to encourage and facilitate cutting-edge research.  相似文献   

17.
Within a few years, the genome sequences of a large number of medically and agriculturally important fungi will be known. With this resource come the promises of genomic approaches to study pathogenicity and host-fungus interactions. Genomics is particularly attractive for these questions, as conventional genetic and biochemical approaches are limited in many pathogenic fungi. Recent work has applied signature-tagged mutagenesis and DNA microarray analysis to virulence studies in several fungal species, and novel approaches, such as protein arrays and genomic deletion libraries, are being developed in Saccharomyces cerevisiae and have significant potential in other fungi. High-throughput gene-discovery approaches should greatly increase our understanding of fungal pathogenesis.  相似文献   

18.
The Positive Role of the Ecological Community in the Genomic Revolution   总被引:3,自引:0,他引:3  
  相似文献   

19.
20.
High-throughput sequencing technologies provide new opportunities to address longstanding questions about habitat adaptation in microbial organisms. How have microbes managed to adapt to such a wide range of environments, and what genomic features allow for such adaptation? We review recent large-scale studies of habitat adaptation, with emphasis on those that utilize phylogenetic techniques. On the basis of current trends, we summarize methodological challenges faced by investigators, and the tools, techniques and analytical approaches available to overcome them. Phylogenetic approaches and detailed information about each environmental sample will be crucial as the ability to collect genome sequences continues to expand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号