共查询到14条相似文献,搜索用时 15 毫秒
1.
Wenshuang Wang Wenjun Han Xingya Cai Xiaoyu Zheng Kazuyuki Sugahara Fuchuan Li 《The Journal of biological chemistry》2015,290(12):7823-7832
Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886–27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17–65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications. 相似文献
2.
Kim SH Jhon DJ Song JH No JS Kang NS 《Bioorganic & medicinal chemistry letters》2008,18(14):3988-3991
Cathepsin K is the key regulator in the osteoclast-mediated bone resorption. Here, we found the correlation between the inhibitory activities of carbonitrile derivatives in the enzymatic activity of cathepsin K and their binding scores predicted using FlexX-Pharm docking program. The binding pattern of [1-(2-cyano-tetrahydro-pyridazine-1-carbonyl)-2-methy-propyl]-carbamic acid benzyl ester (8), one member of this series, was similar to that of the reference. In a bone pit formation assay, compound 8 was shown to dose-dependently inhibit the bone resorptive activity of mature osteoclasts. 相似文献
3.
Core Protein of Chondroitin Sulfate Proteoglycan Promotes Neurite Outgrowth from Cultured Neocortical Neurons 总被引:3,自引:1,他引:3
Noboru Iijima† Atsuhiko Oohira‡ Toshio Mori† Katsuaki Kitabatake† Shinichi Kohsaka 《Journal of neurochemistry》1991,56(2):706-708
Chondroitin sulfate proteoglycan (CS-PG) was purified from rat brain and examined for its effect on neurite outgrowth in primary cultures of embryonic rat neocortical neurons. Neurite outgrowth was increased in culture wells coated with CS-PG. The core protein and glycosaminoglycan (GAG) prepared from the CS-PG were also examined for neurite-promoting activity. The activity was observed in culture wells coated with the core protein but not with GAG. These results suggest that CS-PG stimulates neurite outgrowth from the cultured neurons via its core protein. 相似文献
4.
Katarina Holmborn Judith Habicher Zsolt Kasza Anna S. Eriksson Beata Filipek-Gorniok Sandeep Gopal John R. Couchman Per E. Ahlberg Malgorzata Wiweger Dorothe Spillmann Johan Kreuger Johan Ledin 《The Journal of biological chemistry》2012,287(40):33905-33916
The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation of the common proteoglycan linkage tetrasaccharide were analyzed along with ext2 and extl3 mutants, predicted to have defective HS polymerization. Notably, the effects on HS and CS biosynthesis in the respective mutant strains were shown to differ from what had been hypothesized. In uxs1 and b3gat3 mutant larvae, biosynthesis of CS was shown to be virtually abolished, whereas these mutants still were capable of synthesizing 50% of the HS produced in control larvae. extl3 and ext2 mutants on the other hand were shown to synthesize reduced amounts of hypersulfated HS. Further, extl3 mutants produced higher levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies in the single mutant strains, as well as in ext2;uxs1 double mutants, was conducted. A correlation between HS and CS production and phenotypes was found, such that impaired HS biosynthesis was shown to affect chondrocyte intercalation, whereas impaired CS biosynthesis inhibited formation of the extracellular matrix surrounding chondrocytes. 相似文献
5.
Cherney MM Lecaille F Kienitz M Nallaseth FS Li Z James MN Brömme D 《The Journal of biological chemistry》2011,286(11):8988-8998
In the presence of oligomeric chondroitin 4-sulfate (C4-S), cathepsin K (catK) forms a specific complex that was shown to be the source of the major collagenolytic activity in bone osteoclasts. C4-S forms multiple contacts with amino acid residues on the backside of the catK molecule that help to facilitate complex formation. As cathepsin L does not exhibit a significant collagenase activity in the presence or in the absence of C4-S, we substituted the C4-S interacting residues in catK with those of cathepsin L. Variants revealed altered collagenolytic activities with the largest inhibitory effect shown by the hexavariant M5. None of the variants showed a reduction in their gelatinolytic and peptidolytic activities when compared with wild-type catK, indicating no structural alteration within their active sites. However, the crystal structure of the M5 variant in the presence of oligomeric C4-S revealed a different binding of chondroitin 4-sulfate. C4-S is not continuously ordered as it is in the wild-type catK·C4-S complex. The orientation and the direction of the hexasaccharide on the catK surface have changed, so that the hexasaccharide is positioned between two symmetry-related molecules. Only one M5 variant molecule of the dimer that is present in the asymmetric unit interacts with C4-S. These substitutions have changed the mode of catK binding to C4-S and, as a result, have likely affected the collagenolytic potential of the variant. The data presented here support our hypothesis that distinct catK/C4-S interactions are necessary for the collagenolytic activity of the enzyme. 相似文献
6.
Nobuo Sugiura Tatsumasa Shioiri Mie Chiba Takashi Sato Hisashi Narimatsu Koji Kimata Hideto Watanabe 《The Journal of biological chemistry》2012,287(52):43390-43400
Chondroitin sulfate (CS) is a linear acidic polysaccharide, composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine and modified with sulfate residues at different positions, which plays various roles in development and disease. Here, we chemo-enzymatically synthesized various CS species with defined lengths and defined sulfate compositions, from chondroitin hexasaccharide conjugated with hexamethylenediamine at the reducing ends, using bacterial chondroitin polymerase and recombinant CS sulfotransferases, including chondroitin-4-sulfotransferase 1 (C4ST-1), chondroitin-6-sulfotransferase 1 (C6ST-1), N-acetylgalactosamine 4-sulfate 6-sulfotransferase (GalNAc4S-6ST), and uronosyl 2-sulfotransferase (UA2ST). Sequential modifications of CS with a series of CS sulfotransferases revealed their distinct features, including their substrate specificities. Reactions with chondroitin polymerase generated non-sulfated chondroitin, and those with C4ST-1 and C6ST-1 generated uniformly sulfated CS containing >95% 4S and 6S units, respectively. GalNAc4S-6ST and UA2ST generated highly sulfated CS possessing ∼90% corresponding disulfated disaccharide units. Sequential reactions with UA2ST and GalNAc4S-6ST generated further highly sulfated CS containing a mixed structure of disulfated units. Surprisingly, sequential reactions with GalNAc4S-6ST and UA2ST generated a novel CS molecule containing ∼29% trisulfated disaccharide units. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis using the CS library and natural CS products modified with biotin at the reducing ends, revealed details of the interactions of CS species with anti-CS antibodies, and with CS-binding molecules such as midkine and pleiotrophin. Chemo-enzymatic synthesis enables the generation of CS chains of the desired lengths, compositions, and distinct structures, and the resulting library will be a useful tool for studies of CS functions. 相似文献
7.
Tomoyuki Kaneiwa Anzu Miyazaki Ryo Kogawa Shuji Mizumoto Kazuyuki Sugahara Shuhei Yamada 《The Journal of biological chemistry》2012,287(50):42119-42128
Human hyaluronidase-4 (hHYAL4), a member of the hyaluronidase family, has no hyaluronidase activity, but is a chondroitin sulfate (CS)-specific endo-β-N-acetylgalactosaminidase. The expression of hHYAL4 is not ubiquitous but restricted to placenta, skeletal muscle, and testis, suggesting that hHYAL4 is not involved in the systemic catabolism of CS, but rather has specific functions in particular organs or tissues. To elucidate the function of hyaluronidase-4 in vivo, mouse hyaluronidase-4 (mHyal4) was characterized. mHyal4 was also demonstrated to be a CS-specific endo-β-N-acetylgalactosaminidase. However, mHyal4 and hHYAL4 differed in the sulfate groups they recognized. Although hHYAL4 strongly preferred GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)-containing sequences typical in CS-D, where GlcUA represents d-glucuronic acid, mHyal4 depolymerized various CS isoforms to a similar extent, suggesting broad substrate specificity. To identify the amino acid residues responsible for this difference, a series of human/mouse HYAL4 chimeric proteins and HYAL4 point mutants were generated, and their preference for substrates was investigated. A combination of the amino acid residues at 261–265 and glutamine at 305 was demonstrated to be essential for the enzymatic activity as well as substrate specificity of mHyal4. 相似文献
8.
Kavita Singh Rossitza K. Gitti Ababacar Diouf Hong Zhou D. Channe Gowda Kazutoyo Miura Stanley A. Ostazeski Rick M. Fairhurst David N. Garboczi Carole A. Long 《The Journal of biological chemistry》2010,285(32):24855-24862
Molecular interactions between the VAR2CSA protein, expressed on the surface of Plasmodium falciparum-infected erythrocytes, and placental chondroitin sulfate A (CSA) are primarily responsible for pregnancy-associated malaria (PAM). Interrupting these interactions may prevent or ameliorate the severity of PAM. Several of the Duffy binding-like (DBL) domains of VAR2CSA, including the DBL3x domain, have been shown to bind CSA in vitro, but a more detailed understanding of how DBL domains bind CSA is needed. In this study, we demonstrate that subdomain 3 (S3), one of the three subdomains of VAR2CSA DBL3x by itself, is the major contributor toward CSA binding. NMR spectroscopy and flow cytometry analyses show that S3 and the intact DBL3x domain bind CSA similarly. Mutations within the S3 portion of DBL3x markedly affect CSA binding. Both recombinant molecules, S3 and DBL3x, are recognized by antibodies in the plasma of previously pregnant women living in malaria-endemic regions of Mali, but much less so by plasma from men of the same regions. As the S3 sequence is highly conserved in all known VAR2CSA proteins expressed by different parasite isolates obtained from various malaria endemic areas of the world, the identification of S3 as an independent CSA-binding region provides a compelling molecular basis for designing interventions against PAM. 相似文献
9.
10.
Pia Rosgaard Jensen Thomas Levin Andersen Brenda L. Pennypacker Le T. Duong Lars H. Engelholm Jean-Marie Delaissé 《Biochemical and biophysical research communications》2014
The bone matrix is maintained functional through the combined action of bone resorbing osteoclasts and bone forming osteoblasts, in so-called bone remodeling units. The coupling of these two activities is critical for securing bone replenishment and involves osteogenic factors released by the osteoclasts. However, the osteoclasts are separated from the mature bone forming osteoblasts in time and space. Therefore the target cell of these osteoclastic factors has remained unknown. Recent explorations of the physical microenvironment of osteoclasts revealed a cell layer lining the bone marrow and forming a canopy over the whole remodeling surface, spanning from the osteoclasts to the bone forming osteoblasts. Several observations show that these canopy cells are a source of osteoblast progenitors, and we hypothesized therefore that they are the likely cells targeted by the osteogenic factors of the osteoclasts. Here we provide evidence supporting this hypothesis, by comparing the osteoclast-canopy interface in response to two types of bone resorption inhibitors in rabbit lumbar vertebrae. The bisphosphonate alendronate, an inhibitor leading to low bone formation levels, reduces the extent of canopy coverage above osteoclasts. This effect is in accordance with its toxic action on periosteoclastic cells. In contrast, odanacatib, an inhibitor preserving bone formation, increases the extent of the osteoclast-canopy interface. Interestingly, these distinct effects correlate with how fast bone formation follows resorption during these respective treatments. Furthermore, canopy cells exhibit uPARAP/Endo180, a receptor able to bind the collagen made available by osteoclasts, and reported to mediate osteoblast recruitment. Overall these observations support a mechanism where the recruitment of bone forming osteoblasts from the canopy is induced by osteoclastic factors, thereby favoring initiation of bone formation. They lead to a model where the osteoclast-canopy interface is the physical site where coupling of bone resorption to bone formation occurs. 相似文献
11.
Akio Shimizu Hironao Nakayama Priscilla Wang Courtney K?nig Tomoshige Akino Johanna Sandlund Silvia Coma Joseph E. Italiano Jr. Akiko Mammoto Diane R. Bielenberg Michael Klagsbrun 《The Journal of biological chemistry》2013,288(4):2210-2222
Glioblastomas are very difficult tumors to treat because they are highly invasive and disseminate within the normal brain, resulting in newly growing tumors. We have identified netrin-1 as a molecule that promotes glioblastoma invasiveness. As evidence, netrin-1 stimulates glioblastoma cell invasion directly through Matrigel-coated transwells, promotes tumor cell sprouting and enhances metastasis to lymph nodes in vivo. Furthermore, netrin-1 regulates angiogenesis as shown in specific angiogenesis assays such as enhanced capillary endothelial cells (EC) sprouting and by increased EC infiltration into Matrigel plugs in vivo, as does VEGF-A. This netrin-1 signaling pathway in glioblastoma cells includes activation of RhoA and cyclic AMP response element-binding protein (CREB). A novel finding is that netrin-1-induced glioblastoma invasiveness and angiogenesis are mediated by activated cathepsin B (CatB), a cysteine protease that translocates to the cell surface as an active enzyme and co-localizes with cell surface annexin A2 (ANXA2). The specific CatB inhibitor CA-074Me inhibits netrin-1-induced cell invasion, sprouting, and Matrigel plug angiogenesis. Silencing of CREB suppresses netrin-1-induced glioblastoma cell invasion, sprouting, and CatB expression. It is concluded that netrin-1 plays an important dual role in glioblastoma progression by promoting both glioblastoma cell invasiveness and angiogenesis in a RhoA-, CREB-, and CatB-dependent manner. Targeting netrin-1 pathways may be a promising strategy for brain cancer therapy. 相似文献
12.
C. Pitchumani Violet Mary R. Shankar 《Journal of biomolecular structure & dynamics》2018,36(3):634-655
Computational studies on the interaction of novel inhibitor compounds with the Cathepsin K protease have been performed to study the inhibition properties of the inhibitor compounds. The quantum chemical calculations have been performed to analyze the molecular geometries, structural stability, reactivity, nature of interaction, and the charge transfer properties using B3LYP level of theory by implementing 6-311g(d,p) basis set. The calculated C–S and N–H…N bond lengths of the inhibitor-triad complexes are found to agree well with the previous literature results. The chemical reactivity of the inhibitors and catalytic triad are analyzed through frontier molecular orbital analysis and found that the inhibitors are subjected to nucleophilic attack by the catalytic triad. The nature of inhibition of the inhibitor compounds is examined using the quantum theory of Atoms in Molecules analysis and found to be partially covalent. The NBO stabilization energy for the Cys – inhibitor are found to be most stable than the other interactions. The molecular dynamic simulations were performed to study the influence of dynamic of the active site on the QM results. The many body decomposition interaction energy calculated for the final results of MD simulation reveals that the dynamic of the active site induces significant changes in the interaction energy and occupancy of H-bonds plays a major role in the stabilizing the active site inhibitor interactions. The present study reveals that the inhibitor compounds can inhibit the proteolytic activity of the proteases on binding with the catalytic active site. 相似文献
13.
Ju Eun Je Sang Jung Ahn Na Young Kim Jung Soo Seo Moo-Sang Kim Nam Gyu Park Joong Kyun Kim Joon Ki Chung Hyung Ho Lee 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2009,154(4):474-485
We assessed the putative physiological roles of cathepsin K from a flatfish, olive flounder. We cloned a cDNA encoding for cathepsin K (PoCtK), a cysteine protease of the papain family from olive flounder, Paralichthys olivaceus. The tissue-specific expression pattern of PoCtK, determined via real-time PCR analysis, revealed ubiquitous expression in normal tissues with high levels of expression in the spleen and bone marrow. However, PoCtK expression was significantly increased in the muscle and gill at 3–24 h post-injection with bacterial lipopolysaccharide (LPS). The cDNA encoding for the mature enzyme of PoCtK was expressed in Escherichia coli using the pGEX-4T-1 expression vector system. Its activity was quantified via the cleavage of the synthetic peptide Z-Gly-Pro-Arg-MCA, zymography, and the collagen degradation assay. The optimum pH for the protease activity was 8, and the recombinant PoCtK enzyme degraded collagen types I, II, III, IV, and VI and acid-soluble collagen from olive flounder muscle in the presence of chondroitin 4-sulphate (C-4S). Therefore, our data indicate that cathepsin K may play a role in the immune system of fish skin and muscle, in addition to its principal bone-specific function as a collagenolytic enzyme. 相似文献
14.
It has been previously demonstrated by our group that our specifically designed synchronization modulation electric field
can dynamically entrain the Na/K ATPase molecules, effectively accelerating the pumping action of these molecules. The ATPase
molecules are first synchronized by the field, and subsequently their pumping rates are gradually modulated in a stepwise
pattern to progressively higher and higher levels. Here, we present results obtained on application of the field to intact
twitch skeletal muscle fibers. The ionic concentration gradient across the cell membrane was monitored, with the membrane
potential extrapolated using a slow fluorescent probe with a confocal microimaging technique. The applied synchronization-modulation
electric field is able to slowly but consistently increase the ionic concentration gradient across the membrane and, hence,
hyperpolarize the membrane potential. All of these results were fully eliminated if ouabain was applied to the bathing solution,
indicating a correlation with the action of the Na/K pump molecules. These results in combination with our previous results
into the entrainment of the pump molecules show that the synchronization-modulation electric field-induced activation of the
Na/K pump functions can effectively increase the ionic concentration gradient and the membrane potential. 相似文献