首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown.In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient.B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk formation may lead to a more efficient production of artificial or regenerated silkworm silk fibers.  相似文献   

2.
The N-terminal (NT) domain of spider silk proteins (spidroins) is crucial for their storage at high concentrations and also regulates silk assembly. NTs from the major ampullate spidroin (MaSp) and the minor ampullate spidroin are monomeric at neutral pH and confer solubility to spidroins, whereas at lower pH, they dimerize to interconnect spidroins in a fiber. This dimerization is known to result from modulation of electrostatic interactions by protonation of well-conserved glutamates, although it is undetermined if this mechanism applies to other spidroin types as well. Here, we determine the solution and crystal structures of the flagelliform spidroin NT, which shares only 35% identity with MaSp NT, and investigate the mechanisms of its dimerization. We show that flagelliform spidroin NT is structurally similar to MaSp NT and that the electrostatic intermolecular interaction between Asp 40 and Lys 65 residues is conserved. However, the protonation events involve a different set of residues than in MaSp, indicating that an overall mechanism of pH-dependent dimerization is conserved but can be mediated by different pathways in different silk types.  相似文献   

3.
Formation of spider silk from its constituent proteins—spidroins—involves changes from soluble helical/coil conformations to insoluble β-sheet aggregates. This conversion needs to be regulated to avoid precocious aggregation proximally in the silk gland while still allowing rapid silk assembly in the distal parts. Lowering of pH from about 7 to 6 is apparently important for silk formation. The spidroin N-terminal domain (NT) undergoes stable dimerization and structural changes in this pH region, but the underlying mechanisms are incompletely understood. Here, we determine the NMR and crystal structures of Euprosthenops australis NT mutated in the dimer interface (A72R). Also, the NMR structure of wild‐type (wt) E. australis NT at pH 7.2 and 300 mM sodium chloride was determined. The wt NT and A72R structures are monomers and virtually identical, but they differ from the subunit structure of dimeric wt NT mainly by having a tryptophan (W10) buried between helix 1 and helix 3, while W10 is surface exposed in the dimer. Wedging of the W10 side chain in monomeric NT tilts helix 3 approximately 5–6 Å into a position that is incompatible with that of the observed dimer structure. The structural differences between monomeric and dimeric NT domains explain the tryptophan fluorescence patterns of NT at pH 7 and pH 6 and indicate that the biological function of NT depends on conversion between the two conformations.  相似文献   

4.
Spider silk protein refolding is controlled by changing pH   总被引:1,自引:0,他引:1  
Spidroins, the major silk proteins making up the spider's dragline silk, originate in two distinct tissue layers (A and B) in the spider's major ampullate gland. Formation of the complex thread from spidroins occurs in the lumen of the duct connected to the gland. Using pH-sensitive microelectrode probes, we showed that the spidroins traveling through the gland and duct experience a monotonic decrease in pH from 7.2 to 6.3. In addition, circular dichroism spectroscopy of material extracted from the gland showed a structural refolding concomitant with position in the gland and post-extraction changes in pH. We demonstrate that lowering the pH in vitro causes a dramatic conformational change in the protein from the A zone, converting it irreversibly from a coil to a predominantly beta-sheet structure. Furthermore, amino acid analyses have indicated that there are at least two distinct, though similar, proteins secreted in the A and B zones suggesting a potential factor in the progressive acidification as well as a pH sensitivity of the folding of spidroins in the gland. Thus, we provide, for the first time, a quantitative map of the pH value and position correlated with molecular structural folding in the silk gland characterizing the crucial role that pH plays in spider silk formation.  相似文献   

5.
《BBA》1986,849(3):355-365
Rapid CO2 gas exchange by Helianthus leaves was analysed kinetically using a computer model which distinguished different components of the gas exchange by different time constants. A rapid phase of CO2 uptake was ascribed to the solubilization of CO2 in all leaf compartments and to the conversion of the dissolved CO2 to HCO3 in the chloroplast stroma which contains carbonic anhydrase. From stromal HCO3CO2 ratios the stroma pH of darkened leaves was estimated to be close to 7.5. Occasionally, values as high as 8 or as low as 7 were also obtained. If fast HCO3 formation also occurs in the cytosol, pH values may be lower by about 0.3 pH units than those calculated under the assumption that carbonic anhydrase is localized in chloroplasts only. Illumination with a light intensity close to saturation of photosynthesis caused an increase in CO2 solubilization which indicated the alkalization of the chloroplast stroma by about 0.6 pH units. This is an underestimation, if the pH of cytosol decreases in the light liberating CO2 by the action of carbon anhydrase. An alkalization of the stroma by 0.6 pH units indicates the export of about 450 nmol H+/mg chlorophyll from the stroma. This forms the basis of a large transthylakoid pH gradient which drives light-dependent ATP synthesis. A pH gradient between stroma and cytosol is capable of supporting secondary gradients between these compartments in the light, such as a gradient in the ATPADP ratio. On darkening, the stroma alkalization was reversed. The rate of stroma acidification was much higher in the presence of CO2 than in its absence.  相似文献   

6.
B. N. Patel  M. J. Merrett 《Planta》1986,169(1):81-86
The regulation of carbonic anhydrase by environmental conditions was determined forChlamydomonas reinhardtii. The depression of carbonic anhydrase in air-grown cells was pH-dependent. Growth of cells on air at acid pH, corresponding to 10 m CO2 in solution, resulted in complete repression of carbonic-anhydrase activity. At pH 6.9, increasing the CO2 concentration to 0.15% (v/v) in the gas phase, corresponding to 11 M in solution, was sufficient to completely repress carbonic-anhydrase activity. Photosynthesis and intracellular inorganic carbon were measured in air-grown and high-CO2-grown cells using a silicone-oil centrifugation technique. With carbonic anhydrase repressed cells limited inorganic-carbon accumulation resulted from non-specific binding of CO2. With air-grown cells, inorganic-carbon uptake at acid pH, i.e. 5.5, was linear up to 0.5 mM external inorganic-carbon concentration whereas at alkaline pH, i.e. 7.5, the accumulation ratio decreased with increase in external inorganic-carbon concentration. It is suggested that in air-grown cells at acid pH, CO2 is the inorganic carbon species that crosses the plasmalemma. The conversion of CO2 to HCO 3 - by carbonic anhydrase in the cytosol results in inorganic-carbon accumulation and maintains the diffusion gradient for carbon dioxide across the cell boundary. However, this mechanism will not account for energy-dependent accumulation of inorganic carbon when there is little difference in pH between the exterior and cytosol.  相似文献   

7.
Spiders produce up to six different kinds of silk, each one for a specific biological function. Spider silks are also known for their unique mechanical properties. The possibility of producing new materials with similar properties motivated research on these silk proteins (spidroins). Using expression sequence tags, we identified four spidroins produced by major ampullate, minor ampullate, flagelliform and tubuliform silk glands from the Brazilian spider Nephilengys cruentata (Araneae: Nephilidae). The new protein sequences showed substantial similarity to other spidroins previously described, with high content of alanine and glycine due to the presence of the highly repetitive motifs (polyAla, (GA)n, (GGX)n, (GPGGX)n). Similarities among sequences were also observed between the different spidroins with the exception of tubuliform spidroin, which presents a unique complex amino acid sequence with high amounts of serine and low amounts of glycine.  相似文献   

8.
Spiders can produce up to seven different types of silks or glues with different mechanical properties. Of these, flagelliform (Flag) silk is the most elastic, and aciniform (AcSp1) silk is the toughest. To produce a chimeric spider silk (spidroin) FlagR-AcSp1R, we fused one repetitive module of flagelliform silk from Araneus ventricosus and one repetitive module of aciniform silk from Argiope trifasciata. The recombinant protein expressed in E. coli formed silk-like fibers by manual-drawing. CD analysis showed that the secondary structure of FlagR-AcSp1R spidroin remained stable during the gradual reduction of pH from 7.0 to 5.5. The spectrum of FTIR indicated that the secondary structure of FlagR-AcSp1R changed from α-helix to β-sheet. The conformation change of FlagR-AcSp1R was similar to other spidroins in the fiber formation process. SEM analysis revealed that the mean diameter of the fibers was around 1 ~ 2 μm, and the surface was smooth and uniform. The chimeric fibers exhibited superior toughness (~33.1 MJ/m3) and tensile strength (~261.4 MPa). This study provides new insight into design of chimeric spider silks with high mechanical properties.  相似文献   

9.
Inorganic carbon (Ci) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO2. Both air-grown cells, that have a CO2 concentrating system, and 5% CO2-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (Ci) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO2-grown cells also accumulated some Ci, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO2 fixation by high CO2-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO2-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase.  相似文献   

10.
The p-nitrophenyl phosphatase activity of muscle carbonic anhydrase   总被引:6,自引:0,他引:6  
Carbonic anhydrase III from rabbit muscle, a newly discovered major isoenzyme of carbonic anhydrase, has been found to be also a p-nitrophenyl phosphatase, an activity which is not associated with carbonic anhydrases I and II. The p-nitrophenyl phosphatase activity has been shown to chromatograph with the CO2 hydratase activity; both activities are associated with each of its sulfhydryl oxidation subforms; and both activities follow the same pattern of pH stability. This phosphomonoesterase activity of carbonic anhydrase III has an acidic pH optimum (<5.3); its true substrate appears to be the phosphomonoanion with a Km of 2.8 mm. It is competitively inhibited by the typical acid phosphatase inhibitors phosphate (Ki = 1.22 × 10?3M), arsenate (Ki = 1.17 × 10?3M), and molybdate (Ki = 1.34 × 10?7M), with these inhibitors having no effect on the CO2 hydratase or the p-nitrophenyl acetate esterase activities of carbonic anhydrase III. The p-nitrophenyl acetate esterase activity of carbonic anhydrase III, on the other hand, has the sigmoidal pH profile with an inflection at neutral pH, typical of carbonic anhydrases for all of their substrates, and is inhibitable by acetazolamide (a highly specific carbonic anhydrase inhibitor) to the same degree as the CO2 hydratase activity. The acid phosphatase-like activity of carbonic anhydrase III is slightly inhibited by acetazolamide at acidic pH, and inhibited to nearly the same degree at neutral pH. These data are taken to suggest that the phosphatase activity follows a mechanism different from that of the CO2 hydratase and p-nitrophenyl acetate esterase activities and that there is some overlap of the binding sites.  相似文献   

11.
Membrane-permeable and impermeable inhibitors of carbonic anhydrase have been used to assess the roles of extracellular and intracellular carbonic anhydrase on the inorganic carbon concentrating system in Chlamydomonas reinhardtii. Acetazolamide, ethoxzolamide, and a membrane-impermeable, dextran-bound sulfonamide were potent inhibitors of extracellular carbonic anhydrase measured with intact cells. At pH 5.1, where CO2 is the predominant species of inorganic carbon, both acetazolamide and the dextran-bound sulfonamide had no effect on the concentration of CO2 required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]) or inorganic carbon accumulation. However, a more permeable inhibitor, ethoxzolamide, inhibited CO2 fixation but increased the accumulation of inorganic carbon as compared with untreated cells. At pH 8, the K0.5(CO2) was increased from 0.6 micromolar to about 2 to 3 micromolar with both acetazolamide and the dextran-bound sulfonamide, but to a higher value of 60 micromolar with ethoxzolamide. These results are consistent with the hypothesis that CO2 is the species of inorganic carbon which crosses the plasmalemma and that extracellular carbonic anhydrase is required to replenish CO2 from HCO3 at high pH. These data also implicate a role for intracellular carbonic anhydrase in the inorganic carbon accumulating system, and indicate that both acetazolamide and the dextran-bound sulfonamide inhibit only the extracellular enzyme. It is suggested that HCO3 transport for internal accumulation might occur at the level of the chloroplast envelope.  相似文献   

12.
An experimental system consisting of a gas exchange column linked to an assimilation chamber has been developed to record continuously the free dissolved CO2 concentration in seawater containing marine plants. From experiments performed on the red macroalga Chondrus crispus (Rhodophyta, Gigartinales), this measurement is in agreement with the free CO2 concentration calculated from the resistance to CO2 exchanges in a biphasic system (gas and liquid) as earlier reported. The response time of this apparatus is short enough to detect, in conditions of constant pH, a photosynthesis-caused gradient between free CO2 and HCO3 pools which half-equilibrates in 25 seconds. Abolished by carbonic anhydrase, the magnitude of this gradient increases with decreasing time of seawater transit from the chamber to the column apparatus. But its maximum magnitude (0.35 micromolar CO2) is negligible compared to the difference between air and free CO2 (11.4 micromolar CO2). This illustrates the extent of the physical limiting-step occurring at the air-water interface when inorganic carbon consumption in seawater is balanced by dissolving gaseous CO2. The direction of this small free CO2/HCO3 gradient indicates that HCO3 is consumed during photosynthesis.  相似文献   

13.
Spider dragline silk proteins, spidroins, have a tripartite composition; a nonrepetitive N-terminal domain, a central repetitive region built up from many iterated poly-Ala and Gly rich blocks, and a C-terminal nonrepetitive domain. It is generally believed that the repetitive region forms intermolecular contacts in the silk fibers, while precise functions of the terminal domains have not been established. Herein, thermal, pH, and salt effects on the structure and aggregation and/or polymerization of recombinant N- and C-terminal domains, a repetitive segment containing four poly-Ala and Gly rich coblocks, and combinations thereof were studied. The N- and C-terminal domains have mainly alpha-helical structure, and interestingly, both form homodimers. Dimerization of the end domains allows spidroin multimerization independent of the repetitive part. Reduction of an intersubunit disulfide in the C-terminal domain lowers the thermal stability but does not affect dimerization. The repetitive region shows helical secondary structure but appears to lack stable folded structure. A protein composed of this repetitive region linked to the C-terminal domain has a mainly alpha-helical folded structure but shows an abrupt transition to beta-sheet structures upon heating. At room temperature, this protein self-assembles into macroscopic fibers within minutes. The secondary structures of none of the domains are altered by pH or salt. However, high concentrations of phosphate affect the tertiary structure and accelerate the aggregation propensity of the repetitive region. Implications of these results for dragline spidroin behavior in solution and silk fiber formation are discussed.  相似文献   

14.
Around 4.4 million ha of land in USDA Conservation Reserve Program (CRP) contracts will expire between 2013 and 2018 and some will likely return to crop production. No‐till (NT) management offers the potential to reduce the global warming costs of CO2, CH4, and N2O emissions during CRP conversion, but to date there have been no CRP conversion tillage comparisons. In 2009, we converted portions of three 9–21 ha CRP fields in Michigan to conventional tillage (CT) or NT soybean production and reserved a fourth field for reference. Both CO2 and N2O fluxes increased following herbicide application in all converted fields, but in the CT treatment substantial and immediate N2O and CO2 fluxes occurred after tillage. For the initial 201‐day conversion period, average daily N2O fluxes (g N2O‐N ha?1 d?1) were significantly different in the order: CT (47.5 ± 6.31, n = 6) ? NT (16.7 ± 2.45, n = 6) ? reference (2.51 ± 0.73, n = 4). Similarly, soil CO2 fluxes in CT were 1.2 times those in NT and 3.1 times those in the unconverted CRP reference field. All treatments were minor sinks for CH4 (?0.69 ± 0.42 to ?1.86 ± 0.37 g CH4–C ha?1 d?1) with no significant differences among treatments. The positive global warming impact (GWI) of converted soybean fields under both CT (11.5 Mg CO2e ha?1) and NT (2.87 Mg CO2e ha?1) was in contrast to the negative GWI of the unconverted reference field (?3.5 Mg CO2e ha?1) with on‐going greenhouse gas (GHG) mitigation. N2O contributed 39.3% and 55.0% of the GWI under CT and NT systems with the remainder contributed by CO2 (60.7% and 45.0%, respectively). Including foregone mitigation, we conclude that NT management can reduce GHG costs by ~60% compared to CT during initial CRP conversion.  相似文献   

15.
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O2 evolution, dissolved inorganic carbon accumulation, and photosynthetic CO2 fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO2-concentrating process. This COS inhibition can be attributed to inhibition of external HCO3 conversion to CO2 and OH by the carbonic anhydrase component of an active CO2 pump. At a low pH of 5 to 6, COS stimulated O2 evolution during photosynthesis by algae with low CO2 in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO2. Although COS had less effect on HCO3 accumulation at pH 9 by a HCO3 pump in Scenedesmus, COS reduced O2 evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO2 and H2S, its inhibition of the CO2 pump activity and photosynthesis is not accurate, when measured by O2 evolution, by NaH14CO3 accumulation, or by 14CO2 fixation.  相似文献   

16.
The steady-state kinetic parameters for the hydration of CO2 catalyzed by membrane-bound carbonic anhydrase from the renal brush-border of the dog are compared with the same parameters for water-soluble bovine erythrocyte carbonic anhydrase. For the membrane-bound enzyme, the turnover number kcat is 6.5 × 105 s?1 and the Michaelis constant is 7.5 mm for CO2 hydration at pH 7.4 and 25 °C. The corresponding constants for bovine carbonic anhydrase under these conditions are 6.3 × 105 s?1 and 15 mm (Y. Pocker and D.W. Bjorkquist (1977)Biochemistry16, 5698–5707). The rate constant for the transfer of a proton between carbonic anhydrase and buffer was determined from the dependence of the catalytic rate on the concentration of the buffers imidazole and N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (Hepes); the value of 2 × 108m?1s?1 describes this constant for both forms of carbonic anhydrase at pH 7.4. Furthermore, the pH dependence of the initial velocity of hydration of CO2 in the range of pH 6.5 to 8.0 is identical for the membrane-bound and soluble enzyme at low buffer concentration (1–2 mm imidazole). We conclude that the membrane plays no detectable role in affecting the CO2 hydration activity and that the active site of the renal, membrane-bound carbonic anhydrase is exposed to the aqueous phase.  相似文献   

17.
Spider silks are spun from concentrated solutions of spidroin proteins. The appropriate timing of spidroin assembly into organized fibers must be highly regulated to avoid premature fiber formation. Chemical and physical signals presented to the silk proteins as they pass from the ampulle and through the tapered duct include changes in ionic environment and pH as well as the introduction of shear forces. Here, we show that the N-terminal domain of spidroins from the major ampullate gland (MaSp-NTDs) for both Nephila and Latrodectus spiders associate noncovalently as homodimers. The MaSp-NTDs are highly pH-responsive and undergo a structural transition in the physiological pH range of the spider duct. Tryptophan fluorescence of the MaSp-NTDs reveals a change in conformation when pH is decreased, and the pH at which the transition occurs is determined by the amount and type of salt present. Size exclusion chromatography and pulldown assays both indicate that the lower pH conformation is associated with a significantly increased MaSp-NTD homodimer stability. By transducing the duct pH signal into specific protein-protein interactions, this conserved spidroin domain likely contributes significantly to the silk-spinning process. Based on these results, we propose a model of spider silk assembly dynamics as mediated through the MaSp-NTD.  相似文献   

18.
Summary Quantitative analysis has been made of the reactions underlying the Hansson histochemical method for carbonic anhydrase, with a view toward resolving controversies that have arisen regarding its application and specificity.The basic event is the loss of CO2 from the surface of solutions containing HCO 3 , PO 4 2– and cobalt at pH 6–8. Displacement of the equilibria H2CO3 CO2 to the right elevates the pH, and at 6.8 a cobalt precipitate is formed. When tissue containing carbonic anhydrase is floated on the surface, the loss of CO2 and elevation of pH is accelerated at the enzyme site, leading to ncreased cobalt deposits. These are converted to cobalt sulphide for visualization.Study of the changes of pH and CO2 equilibria during the reaction point strongly to the fact that enzymic activity is being measured by the cobalt localization. This activity is reduced or abolished by appropriate concentrations of acetazolamide (or other sulphonamide inhibitors of carbonic anhydrase) and the powerful inorganic inhibitor, cyanate (CNO) ion.  相似文献   

19.
Spiders use a myriad of silk types for daily survival, and each silk type has a unique suite of task-specific mechanical properties. Of all spider silk types, pyriform silk is distinct because it is a combination of a dry protein fiber and wet glue. Pyriform silk fibers are coated with wet cement and extruded into “attachment discs” that adhere silks to each other and to substrates. The mechanical properties of spider silk types are linked to the primary and higher-level structures of spider silk proteins (spidroins). Spidroins are often enormous molecules (>250 kDa) and have a lengthy repetitive region that is flanked by relatively short (∼100 amino acids), non-repetitive amino- and carboxyl-terminal regions. The amino acid sequence motifs in the repetitive region vary greatly between spidroin type, while motif length and number underlie the remarkable mechanical properties of spider silk fibers. Existing knowledge of pyriform spidroins is fragmented, making it difficult to define links between the structure and function of pyriform spidroins. Here, we present the full-length sequence of the gene encoding pyriform spidroin 1 (PySp1) from the silver garden spider Argiope argentata. The predicted protein is similar to previously reported PySp1 sequences but the A. argentata PySp1 has a uniquely long and repetitive “linker”, which bridges the amino-terminal and repetitive regions. Predictions of the hydrophobicity and secondary structure of A. argentata PySp1 identify regions important to protein self-assembly. Analysis of the full complement of A. argentata PySp1 repeats reveals extreme intragenic homogenization, and comparison of A. argentata PySp1 repeats with other PySp1 sequences identifies variability in two sub-repetitive expansion regions. Overall, the full-length A. argentata PySp1 sequence provides new evidence for understanding how pyriform spidroins contribute to the properties of pyriform silk fibers.  相似文献   

20.

Background and aims

The effects of tillage and N fertilization on CO2 and CH4 emissions are a cause for concern worldwide. This paper quantifies these effects in a Mediterranean dryland area.

Methods

CO2 and CH4 fluxes were measured in two field experiments. A long-term experiment compared two types of tillage (NT, no-tillage, and CT, conventional intensive tillage) and three N fertilization rates (0, 60 and 120 kg N ha?1). A short-term experiment compared NT and CT, three N fertilization doses (0, 75 and 150 kg N ha?1) and two types of fertilizer (mineral N and organic N with pig slurry). Aboveground and root biomass C inputs, soil organic carbon stocks and grain yield were also quantified.

Results

The NT treatment showed a greater mean CO2 flux than the CT treatment in both experiments. In the long-term experiment CH4 oxidation was greater under NT, whereas in the short-term experiment it was greater under CT. The fertilization treatments also affected CO2 emissions in the short-term experiment, with the greatest fluxes when 75 and 150 kg organic N ha?1 was applied. Overall, the amount of CO2 emitted ranged between 0.47 and 6.0 kg CO2?equivalent kg grain?1. NT lowered yield-scaled emissions in both experiments, but these treatment effects were largely driven by an increase in grain yield.

Conclusions

In dryland Mediterranean agroecosystems the combination of NT and medium rates of either mineral or organic N fertilization can be an appropriate strategy for optimizing CO2 and CH4 emissions and grain yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号