首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Transcriptionandtranslationaretwostepsofgeneexpression.Transcription,asacontrolstep,isamajoraspectinregulationofgeneexpression.However,thereareanumberofexamplesoftranslationalcontrol.ThesequenceofTIR(translationalinitiationregion)onmRNAcanaffecttheeffici…  相似文献   

5.
6.

Objectives

To explore the effect of placenta-derived mesenchymal stem cells on scar formation as well as the underlying mechanism.

Results

The isolated placenta-derived mesenchymal stem cells from mice were distributed in the wounded areas of scalded mouse models, attenuated inflammatory responses and decreased the deposition of collagens, thus performing a beneficial effect against scar formation. Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells and hypoxia-inducible factor-1α was involved in the protective effect of placenta-derived mesenchymal stem cells in hypoxic condition.

Conclusions

Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells through hypoxia-inducible factor-1α and PMSCs may have a potential application in the treatment of wound.
  相似文献   

7.
8.
9.
10.
Qu L  Ju JY  Chen SL  Shi Y  Xiang ZG  Zhou YQ  Tian Y  Liu Y  Zhu LP 《Cell research》2006,16(7):622-631
Protein N-glycosylation plays very important roles in immunity and α-mannosidase is one of the key enzymes in Nglycosylation. This paper reports that inhibition of α-mannosidase Man2c1 gene expression enhances adhesion of Jurkat T cells. In comparison to the controls with normal expression of the enzyme, Jurkat cells with the inhibition of Man2c1 gene expression (AS cell) formed larger aggregates in culture, indicating an enhancement of adhesion between the cells. mRNA differential display analysis discovered up-regulation of several adhesion molecule genes in the AS cell. Because of the pivotal role played by CD54-LFA-1 interaction in immune cell interaction, this study focused on the contribution of enhanced expression of CD54 and LFA-1 to the enhanced adhesion of AS Jurkat cells. These facts, including increased binding of AS cells to ICAM-1-Fc, Mg^2+ activation of the binding of AS cells to ICAM-1-Fc and enhanced aggregation of AS cells, together with the inhibiting effect of a blocking CD1 la mAb on the binding to ICAM-1-Fc and aggregation of the cells demonstrate an important contribution of enhanced CD54-LFA-1 interaction to increased adhesion between AS cells. The enhanced CD54-LFA-1 interaction also resulted in increased adhesion between AS Jurkat T cells and Raji B cells. In addition, AS cells showed cytoskeletal rearrangement. The data imply a biological significance of MAN2C1 in T-cell functioning.  相似文献   

11.
12.
13.
14.
Summary The cell-free progesterone 11-hydroxylase enzyme of Rhizopus nigricans can be directly regenerated by periodate oxidation. This permits action of the enzyme over a period of hours with an activity similar to that in the presence of an NADPH generating system.  相似文献   

15.
Glioma stem cells are highly resistant to cell death and as such are supposed to contribute to tumor recurrence by eluding anticancer treatments. Here, we show that spheroids that contain rat neural stem cells (NSCs) or rat glioma stem cells (cancer stem cells, CSCs) express isoforms 1 and 2 of pyruvate kinase (PKM1 and PKM2); however, the expression of PKM2 is considerably higher in glioma spheroids. Silencing of PKM2 enhances both apoptosis and differentiation of rat and human glioma spheroids. We establish that PKM2 was implicated in glioma spheroid differentiation through its interaction with Oct4, a major regulator of self-renewal and differentiation in stem cells. The small molecule Dichloroacetate (DCA), a pyruvate dehydrogenase kinase inhibitor, increases the amount of PKM2/Oct4 complexes and thus inhibited Oct4-dependent gene expression. Taken together, our results highlight a new molecular pathway through which PKM2 can manage gliomagenesis via the control of glioma stemness by Oct4.  相似文献   

16.
Tumor necrosis factor α (TNF-α) receptor-associated factor 2 (TRAF2) regulates activation of the c-Jun N-terminal kinase (JNK)/c-Jun and the inhibitor of κB kinase (IKK)/nuclear factor κB (NF-κB) signaling cascades in response to TNF-α stimulation. Gene knockout studies have revealed that TRAF2 inhibits TNF-α-induced cell death but promotes oxidative stress-induced apoptosis. Here we report that TNF-α and oxidative stress both induce TRAF2 phosphorylation at serines 11 and 55 and that this dual phosphorylation promotes the prolonged phase of IKK activation while inhibiting the prolonged phase of JNK activation. Prolonged IKK activation trigged by TNF-α plays an essential role in efficient expression of a subset of NF-κB target genes but has no substantial role in TNF-α-induced cell death. On the other hand, TRAF2 phosphorylation in response to oxidative stress significantly promotes cell survival by inducing prolonged IKK activation and by inhibiting the prolonged phase of JNK activation. Notably, stable expression of phospho-null mutant TRAF2 in cancer cells leads to an increase in the basal and inducible JNK activation and B-cell lymphoma 2 (Bcl-2) phosphorylation. In addition, exposure of cells expressing phospho-null mutant TRAF2 to sublethal oxidative stress results in a rapid degradation of Bcl-2 and cellular inhibitor of apoptosis 1 as well as significantly increased cell death. These results suggest that TRAF2 phosphorylation is essential for cell survival under conditions of oxidative stress.  相似文献   

17.
Muscle fibers are formed during embryonic development by the fusion of mononucleated myoblasts. The spatial structure and molecular composition of the sarcolemma are crucial for the myoblast recognition and fusion steps. Cyclodextrins are a group of substances that have the ability to solubilize lipids through the formation of molecular inclusion complexes. Previously, we have shown that methyl-β-cyclodextrin (MbCD) enhances muscle differentiation. Here, we analyzed the effects of α-cyclodextrin (aCD) during myogenesis. Myogenic cultures treated with aCD showed an increase in myoblast fusion and in the expression of myogenin, sarcomeric tropomyosin and desmin. aCD-conditioned media accelerates myogenesis in a similar way as aCD does, and increased levels of IL-4 were found in aCD-conditioned media. aCD-induced effects on myogenesis were inhibited by an anti-IL4 antibody. These results show that α-cyclodextrin induces myogenic differentiation by the release of IL-4.  相似文献   

18.
Dendritic cells (DC) are the most potent antigen-presenting cells and during their life cycle they are exposed to different oxygen tensions. Similarly to inflamed and tumor tissues, lymphoid organs are characterized by a hypoxic microenvironment; thus, the modality by which hypoxia may affect DC is important for regulating both the quality and the intensity of the immune response. Here, we show that human monocyte-derived DC, exposed to hypoxia, expressed high levels of the hypoxia-inducible factor (HIF)-1α, associated with upregulation of BNIP3 and BAX expression. This was paralleled with downregulation of the anti-apoptotic molecule Bcl-2, enhanced caspase-3 activity and poly (ADP-ribose) polymerase cleavage, along with cell death. Transfection of HIF-1α siRNA protected DC from the effects of hypoxia. Of interest, when hypoxic DC were maturated with lipopolysaccharide (LPS), we did not observe an increased cell death, while HIF-1α accumulation and BNIP3 expression were still significantly upregulated. In contrast with immature DC, mature DC expressed higher levels of Bcl-2, and, more importantly, of phosphorylated Akt. Transfection of HIF-1α siRNA to mature DC resulted in a significant upregulation of Akt phosphorylation as well. Moreover, inhibition of PI3K/Akt pathway resulted in an increased cell death of hypoxic mature DC. We may conclude that a prolonged exposure to hypoxia induces a cell death program which could be prevented by HIF-1α inhibition and/or LPS maturation. Our results may contribute to further understand the physiology of DC and the molecular mechanisms involved in the survival of DC, with important implications in the regulation of the immune response.  相似文献   

19.
CP2b activates α-globin expression in an erythroid cell-specific manner, through interaction with CP2c and PIAS1. Although CP2a is identical to CP2b except for lacking an exon encoding additional 36 amino acids and has the intrinsic DNA binding and transactivation properties, it does not exert any role in α-globin expression. Investigation of subcellular localization of exogenous CP2 proteins revealed that CP2a and CP2b were exclusively localized in the cytosol and nucleus, respectively. The CP2b-specific exon was in charge of the nuclear localization of CP2b. Interestingly, subcellular localization of CP2c was either in the nucleus or cytosol depending on the relative level of CP2a and CP2b although CP2c intrinsically localized in the cytosol in the absence of CP2a/CP2b. Finally, dramatic increment of hemoglobin expression was correlated with nuclear translocation of CP2c during MEL cell differentiation. Our data suggest that CP2b potentiate erythroid cell-specific α-globin expression by recruiting CP2c into the nucleus.  相似文献   

20.
Hypoxia, via stabilization of HIF2α, regulates the expression of the intestinal iron transporters DMT1 and ferroportin. Here we investigated whether the intestinal copper importer Ctr1 was also regulated by hypoxia. Copper uptake and Ctr1 mRNA expression were significantly increased in Caco-2 cells exposed to hypoxia. To determine whether HIF2α was involved in regulation of Ctr1 expression, we employed three models of HIF2α knockdown (chemical suppression of HIF2α translation in Caco-2 cells; HIF2α-siRNA-treated HuTu80 cells; HIF2α-intestinal knockout mice); Ctr1 mRNA expression was decreased in all three models under normoxic conditions. HIF2α translational inhibitor did not alter Ctr1 expression under hypoxic conditions. We conclude that basal expression of Ctr1 is regulated by HIF2α; however, the induction by hypoxia is a HIF2α-independent event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号