首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small cell lung cancer (SCLC) is an aggressive malignancy with limited treatment options. We previously found that PARP is overexpressed in SCLC and that targeting PARP reduces cell line and tumor growth in preclinical models. However, SCLC cell lines with PI3K/mTOR pathway activation were relatively less sensitive to PARP inhibition. In this study, we investigated the proteomic changes in PI3K/mTOR and other pathways that occur following PAPR inhibition and/or knockdown in vitro and in vivo. Using reverse-phase protein array, we found the proteins most significantly upregulated following treatment with the PARP inhibitors olaparib and rucaparib were in the PI3K/mTOR pathway (p-mTOR, p-AKT, and pS6) (p≤0.02). Furthermore, amongst the most significantly down-regulated proteins were LKB1 and its targets AMPK and TSC, which negatively regulate the PI3K pathway (p≤0.042). Following PARP knockdown in cell lines, phosphorylated mTOR, AKT and S6 were elevated and LKB1 signaling was diminished. Global ATP concentrations increased following PARP inhibition (p≤0.02) leading us to hypothesize that the observed increased PI3K/mTOR pathway activation following PARP inhibition results from decreased ATP usage and a subsequent decrease in stress response signaling via LKB1. Based on these results, we then investigated whether co-targeting with a PARP and PI3K inhibitor (BKM-120) would work better than either single agent alone. A majority of SCLC cell lines were sensitive to BKM-120 at clinically achievable doses, and cMYC expression was the strongest biomarker of response. At clinically achievable doses of talazoparib (the most potent PARP inhibitor in SCLC clinical testing) and BKM-120, an additive effect was observed in vitro. When tested in two SCLC animal models, a greater than additive interaction was seen (p≤0.008). The data presented here suggest that combining PARP and PI3K inhibitors enhances the effect of either agent alone in preclinical models of SCLC, warranting further investigation of such combinations in SCLC patients.  相似文献   

2.
Ocular neovascularization is a common pathology associated with human eye diseases e.g. age-related macular degeneration and proliferative diabetic retinopathy. Blindness represents one of the most feared disabilities and remains a major burden to health-care systems. Current approaches to treat ocular neovascularisation include laser photocoagulation, photodynamic therapy and anti-VEGF therapies: Ranibizumab (Lucentis) and Aflibercept (Eylea). However, high clinical costs, frequent intraocular injections, and increased risk of infections are challenges related with these standards of care. Thus, there is a clinical need to develop more effective drugs that overcome these challenges. Here, we focus on an alternative approach by quantifying the in vivo anti-angiogenic efficacy of combinations of phosphatidylinositol-3-kinase (PI3K) pathway inhibitors. The PI3K/AKT/mTOR pathway is a complex signalling pathway involved in crucial cellular functions such as cell proliferation, migration and angiogenesis. RT-PCR confirms the expression of PI3K target genes (pik3ca, pik3r1, mtor and akt1) in zebrafish trunks from 6 hours post fertilisation (hpf) and in eyes from 2 days post fertilisation (dpf). Using both the zebrafish intersegmental vessel and hyaloid vessel assays to measure the in vivo anti-angiogenic efficacy of PI3K/Akt/mTOR pathway inhibitors, we identified 5 µM combinations of i) NVP-BEZ235 (dual PI3K-mTOR inhibitor) + PI-103 (dual PI3K-mTOR inhibitor); or ii) LY-294002 (pan-PI3K inhibitor) + NVP-BEZ235; or iii) NVP-BEZ235 + rapamycin (mTOR inhibitor); or iv) LY-294002 + rapamycin as the most anti-angiogenic. Treatment of developing larvae from 2–5 dpf with 5 µM NVP-BEZ235 plus PI-103 resulted in an essentially intact ocular morphology and visual behaviour, whereas other combinations severely disrupted the developing retinal morphology and visual function. In human ARPE19 retinal pigment epithelium cells, however, no significant difference in cell number was observed following treatment with the inhibitor combinations. Collectively, these results highlight the potential of combinations of PI3K/AKT/mTOR pathway inhibitors to safely and effectively treat ocular neovascularization.  相似文献   

3.
Activity of GFR/PI3K/AKT pathway inhibitors in glioblastoma clinical trials has not been robust. We hypothesized variations in the pathway between tumors contribute to poor response. We clustered GBM based on AKT pathway genes and discovered new subtypes then characterized their clinical and molecular features. There are at least 5 GBM AKT subtypes having distinct DNA copy number alterations, enrichment in oncogenes and tumor suppressor genes and patterns of expression for PI3K/AKT/mTOR signaling components. Gene Ontology terms indicate a different cell of origin or dominant phenotype for each subgroup. Evidence suggests one subtype is very sensitive to BCNU or CCNU (median survival 5.8 vs. 1.5 years; BCNU/CCNU vs other treatments; respectively). AKT subtyping advances previous approaches by revealing additional subgroups with unique clinical and molecular features. Evidence indicates it is a predictive marker for response to BCNU or CCNU and PI3K/AKT/mTOR pathway inhibitors. We anticipate Akt subtyping may help stratify patients for clinical trials and augment discovery of class-specific therapeutic targets.  相似文献   

4.
《Autophagy》2013,9(5):536-538
Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.  相似文献   

5.
The search for novel targeted inhibitors active on glioblastoma multiforme is crucial to develop new treatments for this unmet clinical need. Herein, we report the results from a screening campaign against glioma cell lines using a proprietary library of 100 structurally-related pyrazolopyrimidines. Data analysis identified a family of compounds featuring a 2-amino-1,3-benzoxazole moiety (eCF309 to eCF334) for their antiproliferative properties in the nM range. These results were validated in patient-derived glioma cells. Available kinase inhibition profile pointed to blockade of the PI3K/mTOR pathway as being responsible for the potent activity of the hits. Combination studies demonstrated synergistic activity by inhibiting both PI3Ks and mTOR with selective inhibitors. Based on the structure activity relationships identified in this study, five new derivatives were synthesized and tested, which exhibited potent activity against glioma cells but not superior to the dual PI3K/mTOR inhibitor and lead compound of the screening eCF324.  相似文献   

6.
Cellular signaling pathways involving mTOR, PI3K and ERK have dominated recent studies of breast cancer biology, and inhibitors of these pathways have formed a focus of numerous clinical trials. We have chosen trametinib, a drug targeting MEK in the ERK pathway, to address two questions. Firstly, does inhibition of a signaling pathway, as measured by protein phosphorylation, predict the antiproliferative activity of trametinib? Secondly, do inhibitors of the mTOR and PI3K pathways synergize with trametinib in their effects on cell proliferation? A panel of 30 human breast cancer cell lines was chosen to include lines that could be classified according to whether they were ER and PR positive, HER2 over-expressing, and “triple negative”. Everolimus (targeting mTOR), NVP-BEZ235 and GSK2126458 (both targeting PI3K/mTOR) were chosen for combination experiments. Inhibition of cell proliferation was measured by IC50 values and pathway utilization was measured by phosphorylation of signaling kinases. Overall, no correlation was found between trametinib IC50 values and inhibition of ERK signaling. Inhibition of ERK phosphorylation was observed at trametinib concentrations not affecting proliferation, and sensitivity of cell proliferation to trametinib was found in cell lines with low ERK phosphorylation. Evidence was found for synergy between trametinib and either everolimus, NVP-BEZ235 or GSK2126458, but this was cell line specific. The results have implications for the clinical application of PI3K/mTOR and MEK inhibitors.  相似文献   

7.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

8.
AIM: Targeting the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway is a potential means of overcoming chemoresistance in ovarian cancer. We investigated the capability of 18F-fluororodeoxyglucose (18F-FDG) small-animal positron emission tomography (SA-PET) to predict the effects of a dual PI3K/mTOR inhibitor (BEZ-235) in a cisplatin-resistant ovarian cancer model. METHODS: In a first experiment, nude rats bearing subcutaneous SKOV3 tumors received BEZ-235 for 3 days given alone or after paclitaxel and were compared to controls (either untreated or that were given the excipients of paclitaxel and BEZ-235). SA-PET was performed at baseline, on day 3, and day 7. In a second experiment aiming at further exploring the kinetics of 18F-FDG tumor uptake during the first 48 hours following drug cessation, untreated controls were compared to rats receiving BEZ-235, which were imaged at baseline, on day 3, on day 4, and on day 5. SA-PET results were compared to cell proliferation assessment (Ki-67), PI3K/mTOR downstream target expression studies (pAKT and phospho-eukaryotic translation initiation factor 4E-binding protein 1), and apoptosis evaluation (cleaved caspase-3). RESULTS: In the first experiment, BEZ-235, compared to untreated controls, induced a marked decrease in 18F-FDG uptake on day 3, which was correlated to a significant decrease in cell proliferation and to a significant PI3K/mTOR pathway inhibition. No tumor necrosis or apoptosis occurred. Four days following treatment cessation, tumor recovery (in terms of PI3K/mTOR inhibition and cell proliferation) occurred and was identified by 18F-FDG SA-PET. Paclitaxel plus BEZ-235 showed results similar to BEZ-235 alone. In the second experiment, PI3K/mTOR pathways exhibited partial recovery as early as 24 hours following treatment cessation, but both 18F-FDG SA-PET and cell proliferation remained unchanged. CONCLUSIONS:18F-FDG SA-PET is a surrogate marker of target inhibition during treatment with BEZ-235 and predicts tumor recovery 4 days after drug withdrawal, but not during the first 48 hours following drug cessation, when a lag between PI3K/mTOR pathway recovery and metabolic recovery is observed. 18F-FDG SA-PET could be used for therapy monitoring of PI3K/mTOR inhibitors, but our results also raise questions regarding the potential impact of the delay between PET imaging and the last drug intake on the accuracy of FDG imaging.  相似文献   

9.
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is related to cellular activities. Abnormalities of this signaling pathway were discovered in various cancers, including hepatocellular carcinoma (HCC). The PI3K/mTOR dual inhibitors were proposed to have enhanced antitumor efficacies by targeting multiple points of the signaling pathway. We synthesized a series of propynyl-substituted benzenesulfonamide derivatives as PI3K/mTOR dual inhibitors. Compound 7k (NSC781406) was identified as a highly potent dual inhibitor, which exhibited potent tumor growth inhibition in the hepatocellular carcinoma BEL-7404 xenograft model. Compound 7k may be a potential therapeutic drug candidate for HCC.  相似文献   

10.

Purpose

Aberrant PI3K/AKT/mTOR signaling has been linked to oncogenesis and therapy resistance in various malignancies including leukemias. In Philadelphia chromosome (Ph) positive leukemias, activation of PI3K by dysregulated BCR-ABL tyrosine kinase (TK) contributes to the pathogenesis and development of resistance to ABL-TK inhibitors (TKI). The PI3K pathway thus is an attractive therapeutic target in BCR-ABL positive leukemias, but its role in BCR-ABL negative ALL is conjectural. Moreover, the functional contribution of individual components of the PI3K pathway in ALL has not been established.

Experimental Design

We compared the activity of the ATP-competitive pan-PI3K inhibitor NVP-BKM120, the allosteric mTORC1 inhibitor RAD001, the ATP-competitive dual PI3K/mTORC1/C2 inhibitors NVP-BEZ235 and NVP-BGT226 and the combined mTORC1 and mTORC2 inhibitors Torin 1, PP242 and KU-0063794 using long-term cultures of ALL cells (ALL-LTC) from patients with B-precursor ALL that expressed the BCR-ABL or TEL-ABL oncoproteins or were BCR-ABL negative.

Results

Dual PI3K/mTOR inhibitors profoundly inhibited growth and survival of ALL cells irrespective of their genetic subtype and their responsiveness to ABL-TKI. Combined suppression of PI3K, mTORC1 and mTORC2 displayed greater antileukemic activity than selective inhibitors of PI3K, mTORC1 or mTORC1 and mTORC2.

Conclusions

Inhibition of the PI3K/mTOR pathway is a promising therapeutic approach in patients with ALL. Greater antileukemic activity of dual PI3K/mTORC1/C2 inhibitors appears to be due to the redundant function of PI3K and mTOR. Clinical trials examining dual PI3K/mTORC1/C2 inhibitors in patients with B-precursor ALL are warranted, and should not be restricted to particular genetic subtypes.  相似文献   

11.
Fan QW  Weiss WA 《Autophagy》2011,7(5):536-538
Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.  相似文献   

12.
In in vitro studies class-I PI3Ks (phosphoinositide 3-kinases), class-II PI3Ks and mTOR (mammalian target of rapamycin) have all been described as having roles in the regulation of glucose metabolism. The relative role each plays in the normal signalling processes regulating glucose metabolism in vivo is less clear. Knockout and knockin mouse models have provided some evidence that the class-I PI3K isoforms p110α, p110β, and to a lesser extent p110γ, are necessary for processes regulating glucose metabolism and appetite. However, in these models the PI3K activity is chronically reduced. Therefore we analysed the effects of acutely inhibiting PI3K isoforms alone, or PI3K and mTOR, on glucose metabolism and food intake. In the present study impairments in glucose tolerance, insulin tolerance and increased hepatic glucose output were observed in mice treated with the pan-PI3K/mTOR inhibitors PI-103 and NVP-BEZ235. The finding that ZSTK474 has similar effects indicates that these effects are due to inhibition of PI3K rather than mTOR. The p110α-selective inhibitors PIK75 and A66 also induced these phenotypes, but inhibitors of p110β, p110δ or p110γ induced only minor effects. These drugs caused no significant effects on BMR (basal metabolic rate), O2 consumption or water intake, but BEZ235, PI-103 and PIK75 did cause a small reduction in food consumption. Surprisingly, pan-PI3K inhibitors or p110α inhibitors caused reductions in animal movement, although the cause of this is not clear. Taken together these studies provide pharmacological evidence to support a pre-eminent role for the p110α isoform of PI3K in pathways acutely regulating glucose metabolism.  相似文献   

13.
Malignant pleural mesothelioma (MPM) originates in most of the cases from chronic inflammation of the mesothelium due to exposure to asbestos fibers. Given the limited effect of chemotherapy, a big effort is being made to find new treatment options. The PI3K/mTOR pathway was reported to be upregulated in MPM. We tested the cell growth inhibition properties of two dual PI3K/mTOR inhibitors NVP-BEZ235 and GDC-0980 on 19 MPM cell lines. We could identify resistant and sensitive lines; however, there was no correlation to the downregulation of PI3K/mTOR activity markers. As a result of mTOR inhibition, both drugs efficiently induced long-term autophagy but not cell death. Autophagy blockade by chloroquine in combination with the dual PI3K/mTOR inhibitors significantly induced caspase-independent cell death involving RIP1 in the sensitive cell line SPC212. Cell death in the resistant cell line Mero-82 was less pronounced, and it was not induced via RIP1-dependent mechanism, suggesting the involvement of RIP1 downstream effectors. Cell death induction was confirmed in 3D systems. Based on these results, we identify autophagy as one of the main mechanisms of cell death resistance against dual PI3K/mTOR inhibitors in MPM. As PI3K/mTOR inhibitors are under investigation in clinical trials, these results may help interpreting their outcome and suggest ways for intervention.Malignant pleural mesothelioma (MPM) is sensitive to phosphatidylinositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) signaling inhibitors due to the activation of PI3K/mTOR signaling.1, 2 The activation may result from inactivation of INP4A phosphatase, which is downregulated in 44% of MPM (presented at IMIG2014), or alterations in PI3K signaling components, which are mutated in 9% of MPM,3 while receptor tyrosine kinase mutations/amplifications have not been identified in two recent high-throughput studies.4, 5One of the tumor-suppressor genes frequently mutated in MPM is NF2 and NF2-null cells were shown to be sensitive to growth-inhibitory effects of rapamycin6 via mechanisms involving PI3K signaling-independent mTORC1 activation. However, the mTOR inhibitor, everolimus, showed no therapeutic benefit in unselected MPM patients.7 As mTORC1 inhibitors often lead to a feedback activation of PI3K activation in cancers,8, 9 we postulated that dual PI3K–mTOR inhibitors may yield greater therapeutic benefit. Furthermore, NF2 was also shown to inhibit PI3K activity by binding to PI3K enhancer-L (PIKE-L), which disrupts binding of PIKE-L to PI3K10 and loss of NF2 in schwannoma was shown to sensitize to PI3K inhibitors.11In a screen on the dual PI3K/mTOR inhibitor NVP-BEZ235, within the Sanger Institute/MGH''s ‘Genomics of Drug Sensitivity'' screening panel,12 CDKN2A deletion was shown to be associated with increased sensitivity. Because NF2 and CDKN2A are indeed the genes most frequently mutated in MPM, blocking PI3K/mTOR signaling might be a valid approach to circumvent the difficulty of applying targeted therapy in the absence of an identified oncogene. The rationale for targeting the PI3K/mTOR pathway is also supported by the association of increased activity with a worse clinical outcome.13, 14NVP-BEZ235(ref15) and GDC-0980(ref16) are small-molecule inhibitors of class I PI3K and mTOR (mTORC1 and mTORC2). GDC-0980 has been tested in phase I studies where the phase I extension cohort showed two objective responses among 26 patients with mesothelioma.17 Despite these encouraging results, this drug will not be explored further because of side effects observed in another clinical trial.18 This, however, should not deter us for trying to find means to improve the antitumor effect of this class of agents. We have previously shown that PI3K/mTOR signaling inhibition sensitizes mesothelioma cells to drugs that are effluxed via ABCG2 transporter by inhibiting the function of ABCG2.19 In this study, we aimed at identifying the underlying mechanisms responsible for sensitivity versus resistance towards PI3K/mTOR inhibition in a large panel of mesothelioma cell lines. We observed that PI3K/mTOR inhibition increases autophagic rate, which constitutes an efficient mechanism of resistance by inducing growth arrest and survival. However, blocking autophagy, which per se affects cell growth, is synthetically lethal when combined with PI3K/mTOR inhibitors by a mechanism involving receptor-interacting protein kinase 1 (RIP1)-dependent cell death.  相似文献   

14.
A series of benzofuran-3-one indole phosphatidylinositol-3-kinases (PI3K) inhibitors identified via HTS has been prepared. The optimized inhibitors possess single digit nanomolar activity against p110α (PI3K-α), good pharmaceutical properties, selectivity versus p110γ (PI3K-γ), and tunable selectivity versus the mammalian target of rapamycin (mTOR). Modeling of compounds 9 and 32 in homology models of PI3K-α and mTOR supports the proposed rationale for selectivity. Compounds show activity in multiple cellular proliferation assays with signaling through the PI3K pathway confirmed via phospho-Akt inhibition in PC-3 cells.  相似文献   

15.
Rapamycin derivatives allosterically targeting mTOR are currently FDA approved to treat advanced renal cell carcinoma (RCC), and catalytic inhibitors of mTOR/PI3K are now in clinical trials for treating various solid tumors. We sought to investigate the relative efficacy of allosteric versus catalytic mTOR inhibition, evaluate the crosstalk between the mTOR and MEK/ERK pathways, as well as the therapeutic potential of dual mTOR and MEK inhibition in RCC. Pharmacologic (rapamycin and BEZ235) and genetic manipulation of the mTOR pathway were evaluated by in vitro assays as monotherapy as well as in combination with MEK inhibition (GSK1120212). Catalytic mTOR inhibition with BEZ235 decreased proliferation and increased apoptosis better than allosteric mTOR inhibition with rapamycin. While mTOR inhibition upregulated MEK/ERK signaling, concurrent inhibition of both pathways had enhanced therapeutic efficacy. Finally, primary RCC tumors could be classified into subgroups [(I) MEK activated, (II) Dual MEK and mTOR activated, (III) Not activated, and (IV) mTOR activated] based on their relative activation of the PI3K/mTOR and MEK pathways. Patients with mTOR only activated tumors had the worst prognosis. In summary, dual targeting of the mTOR and MEK pathways in RCC can enhance therapeutic efficacy and primary RCC can be subclassified based on their relative levels of mTOR and MEK activation with potential therapeutic implications.  相似文献   

16.
The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in the regulation of cellular growth, survival and proliferation. mTOR and PI3K have attracted particular attention as cancer targets. These kinases belong to the phosphatidylinositol-3-kinase-related kinase (PIKK) family and therefore have considerable homology in their active sites. To accelerate the discovery of inhibitors with selective activity against mTOR and PI3K as cancer targets, in this work, a homology model of mTOR was developed to identify the structural divergence in the active sites between mTOR and PI3Kα. Furthermore, two highly predictive comparative molecular similarity index analyses (CoMSIA) models were built based on 304 selective inhibitors docked into mTOR and PI3Kα, respectively (mTOR: q 2 = 0.658, r pre2 = 0.839; PI3Kα: q 2 = 0.540, r pre2 = 0.719). The results showed that steric and electrostatic fields have an important influence on selectivity towards mTOR and PI3Kα—a finding consistent with the structural divergence between the active sites. The findings may be helpful in investigating selective mTOR/PI3Kα inhibitors.  相似文献   

17.
The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancer and plays a crucial role in glioblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K isoforms as a novel anti-tumor approach in glioblastoma. Consistent expression of the PI3K catalytic isoform PI3K p110α was detected in a panel of glioblastoma patient samples. In contrast, PI3K p110β expression was only rarely detected in glioblastoma patient samples. The expression of a module comprising the epidermal growth factor receptor (EGFR)/PI3K p110α/phosphorylated ribosomal S6 protein (p-S6) was correlated with shorter patient survival. Inhibition of PI3K p110α activity impaired the anchorage-dependent growth of glioblastoma cells and induced tumor regression in vivo. Inhibition of PI3K p110α or PI3K p110β also led to impaired anchorage-independent growth, a decreased migratory capacity of glioblastoma cells, and reduced the activation of the Akt/mTOR pathway. These effects were selective, because targeting of PI3K p110δ did not result in a comparable impairment of glioblastoma tumorigenic properties. Together, our data reveal that drugs targeting PI3K p110α can reduce growth in a subset of glioblastoma tumors characterized by the expression of EGFR/PI3K p110α/p-S6.  相似文献   

18.
The PI3K/Akt/mTOR pathway has a central role in cancer metastasis and radiotherapy. To develop effective therapeutics to improve radiosensitivity, understanding the possible pathways of radioresistance involved and the effects of a combination of the PI3K/Akt/mTOR inhibitors with radiotherapy on prostate cancer (CaP) radioresistant cells is needed. We found that compared with parent CaP cells, CaP-radioresistant cells demonstrated G0/G1 and S phase arrest, activation of cell cycle check point, autophagy and DNA repair pathway proteins, and inactivation of apoptotic proteins. We also demonstrated that compared with combination of single PI3K or mTOR inhibitors (BKM120 or Rapamycin) and radiation, low-dose of dual PI3K/mTOR inhibitors (BEZ235 or PI103) combined with radiation greatly improved treatment efficacy by repressing colony formation, inducing more apoptosis, leading to the arrest of the G2/M phase, increased double-strand break levels and less inactivation of cell cycle check point, autophagy and non-homologous end joining (NHEJ)/homologous recombination (HR) repair pathway proteins in CaP-radioresistant cells. This study describes the possible pathways associated with CaP radioresistance and demonstrates the putative mechanisms of the radiosensitization effect in CaP-resistant cells in the combination treatment. The findings from this study suggest that the combination of dual PI3K/Akt/mTOR inhibitors (BEZ235 or PI103) with radiotherapy is a promising modality for the treatment of CaP to overcome radioresistance.Radiotherapy (RT) is an important treatment option for prostate cancer (CaP) patients detected at early-stage or advanced-stage disease. Despite appropriate RT, up to 30% of treated high-risk CaP patients often experience local relapse and progression to metastatic disease.1 One main reason for these failures following RT is because of radioresistance of a subpopulation of CaP clones within tumor. Therefore, radioresistance is a major challenge for the current CaP RT. RT dose escalation techniques have been used to counteract radioresistance. However, further dose escalations to 82 Gy in a phase II trial yielded significant acute and late morbidity.2 Although three-dimensional conformal RT, intensity-modulated radiation therapy and image guided radiation therapy can increase the dose to local CaP and improve control rate,3 the clinical outcomes indicate that these advanced approaches cannot completely overcome radioresistance in CaP.4 Thus, modalities for improving the therapeutic efficacy of RT for locally confined or locally advanced CaP are warranted to increase sensitivity of radiation treatment in optimizing radiation effect and minimizing radioresistance influence.The PI3K/Akt/mTOR pathway is an important intracellular signaling pathway in regulating cell growth, survival, adhesion and migration, particularly during cancer progression, metastasis and radioresistance,5, 6, 7, 8 and is frequently activated in cancer cells. PI3K activates a number of downstream targets including the serine/threonine kinase Akt that activates mTOR. Many valuable inhibitors targeting one protein (single inhibitor) or two proteins at the same time (dual inhibitor) in the pathway have been developed in recent years.BKM120 is a single PI3K inhibitor by inhibiting p110α/β/δ/γ and often results in tumor suppression,9 and Rapamycin is a single mTOR inhibitor and has been used in clinical trials against various cancer types.10 NVP-BEZ235 (BEZ235) is a potent dual pan-class I PI3K and mTOR inhibitor that inhibits PI3K and mTOR kinase activity and has been used in preclinical studies in many cancers to demonstrate excellent anticancer effects.11 In addition, this inhibitor was the first PI3K/mTOR dual inhibitor to enter clinical trials in 2006.12 PI103 is another potent dual pan-class I PI3K and mTOR inhibitor and selectively targets DNA-PK, PI3K (p110α) and mTOR.13 No reports have been published to test them in CaP-radioresistant (RR) cells as radiosensitizers to improve radiosensitivity so far. The mechanisms of these inhibitors in combination with RT in the treatment of CaP are unclear.Under a low-dose radiation treatment, we have recently developed three CaP-RR cell lines with increased colony formation, invasion ability, sphere formation capability and enhanced epithelial–mesenchymal transition (EMT) and cancer stem cell (CSC) phenotypes and the activation of the PI3K/Akt/mTOR signaling pathway.7 In addition, we also found that the PI3K/Akt/mTOR pathway is closely linked with EMT and CSCs.7 Therefore, these CaP-RR cells, representative of the source of CaP recurrence after RT, may provide a very good model to mimic a clinical radioresistance condition as well as to examine the efficacy of these single and dual PI3K/Akt/mTOR inhibitors for their radiosensitization effects.Here, we investigated (1) whether cell cycle distribution, cell cycle check point proteins, apoptosis, autophagy and DNA repair pathways are involved in CaP radioresistance; (2) the link between radiosensitization effects and cell cycle distribution after treatment with a combination of dual inhibitors (BEZ235 and PI103) and single inhibitors (BKM120 and Rapamycin) with RT in CaP-RR cells in vitro; (3) whether cell death pathways (apoptosis and autophagy), DNA repair pathways (non-homologous end joining (NHEJ) and homologous recombination (HR)) are associated with CaP radiosensitivity after treatment with combination of dual or single inhibitors with RT.  相似文献   

19.
Series of purine and pyrazolo[3,4-d]pyrimidine inhibitors of phosphatidylinositol-3-kinases (PI3K) have been prepared. The optimized purine inhibitors show good potency in a PI3K p110α (PI3K-α) fluorescence polarization assay with good selectivity versus PI3K p110γ (PI3K-γ) and the mammalian target of rapamycin (mTOR). The related pyrazolo[3,4-d]pyrimidines show potent PI3K-α and mTOR inhibition with good selectivity versus PI3K-γ. Representative compounds showed activity in a cellular proliferation assay against Caco-2 colorectal, LoVo colorectal and PC3MM2 prostate adenocarcinoma cancer cells. Signaling through the PI3K pathway was confirmed via inhibition of phospho-AKT in MDA-361 cells.  相似文献   

20.

Introduction

We assessed expression of p85 and p110α PI3K subunits in non-small cell lung cancer (NSCLC) specimens and the association with mTOR expression, and studied effects of targeting the PI3K/AKT/mTOR pathway in NSCLC cell lines.

Methods

Using Automated Quantitative Analysis we quantified expression of PI3K subunits in two cohorts of 190 and 168 NSCLC specimens and correlated it with mTOR expression. We studied effects of two PI3K inhibitors, LY294002 and NVP-BKM120, alone and in combination with rapamycin in 6 NSCLC cell lines. We assessed activity of a dual PI3K/mTOR inhibitor, NVP-BEZ235 alone and with an EGFR inhibitor.

Results

p85 and p110α tend to be co-expressed (p<0.001); p85 expression was higher in adenocarcinomas than squamous cell carcinomas. High p85 expression was associated with advanced stage and poor survival. p110α expression correlated with mTOR (ρ = 0.276). In six NSCLC cell lines, addition of rapamycin to LY294002 or NVP-BKM120 was synergistic. Even very low rapamycin concentrations (1 nM) resulted in sensitization to PI3K inhibitors. NVP-BEZ235 was highly active in NSCLC cell lines with IC50s in the nanomolar range and resultant down-regulation of pAKT and pP70S6K. Adding Erlotinib to NVP-BEZ235 resulted in synergistic growth inhibition.

Conclusions

The association between PI3K expression, advanced stage and survival in NSCLC suggests that it might be a valuable drug target. Concurrent inhibition of PI3K and mTOR is synergistic in vitro, and a dual PI3K/mTOR inhibitor was highly active. Adding EGFR inhibition resulted in further growth inhibition. Targeting the PI3K/AKT/mTOR pathway at multiple levels should be tested in clinical trials for NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号