首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The impact of early postnatal androgen exposure on female laryngeal tissue may depend on certain characteristics of this exposure. We assessed the impact of the dose, duration, and timing of early androgen exposure on the vocal development of female subjects who had been treated for adrenocortical tumor (ACT) in childhood.

Methods

The long-term effects of androgen exposure on the fundamental vocal frequency (F0), vocal pitch, and final height and the presence of virilizing signs were examined in 9 adult (age, 18.4 to 33.5 years) and 10 adolescent (13.6 to 17.8 years) female ACT patients. We also compared the current values with values obtained 0.9 years to 7.4 years after these subjects had undergone ACT surgery, a period during which they had shown normal androgen levels.

Results

Of the 19 subjects, 17 (89%) had been diagnosed with ACT before 4 years of age, 1 (5%) at 8.16 years, and 1 (5%) at 10.75 years. Androgen exposure (2 to 30 months) was sufficiently strong to cause pubic hair growth in all subjects and clitoromegaly in 74% (14/19) of the subjects, but did not reduce their height from the target value. Although androgen exposure induced a remarkable reduction in F0 (132 Hz) and moderate pitch virilization in 1 subject and partial F0 virilization, resulting in F0 of 165 and 169 Hz, in 2 subjects, the majority had normal F0 ranging from 189 to 245 Hz.

Conclusions

Female laryngeal tissue is less sensitive to androgen exposure between birth and adrenarche than during other periods. Differential larynx sensitivity to androgen exposure in childhood and F0 irreversibility in adulthood are age-, concentration-, duration-, and timing-dependent events that may also be affected by exposure to inhibitory or stimulatory hormones. Further studies are required to better characterize each of these factors.  相似文献   

2.
Central hemodynamic parameters were analyzed in 217 healthy full-term newborns. Echocardiography was performed during the first 6 h after birth; during the periods 6–12 and 12–24 h after birth; and at days 3, 5, and 7 of life. A cardiointervalogram (CIG) was recorded simultaneously. Blood pressure was measured in all newborns. Heart rate variability was estimated with standard methods, and differential criteria determined previously were used to identify three CIG types. The spectral analysis of the slow-wave oscillations was performed within the following ranges of frequencies: high frequencies, >0.15 Hz; low frequencies, 0.04 < 0.15 Hz; and very low frequencies, <0.04 Hz. The healthy newborns showed great individual variations of the cardiac index, which were associated with the hyper-, eu-, and hypokinetic types of hemodynamics, evidencing good adaptive capacity of the body. All groups of newborns had three CIG types, irrespective of the type of hemodynamics. The CIG type frequencies depended on the type of hemodynamics at the time of examination of the newborns. This was explained by different mechanisms regulating blood circulation under basal metabolic conditions during functional changes.  相似文献   

3.
L Xiao  Z Li  P Xu  Z Li  J Xu  Z Yang 《PloS one》2012,7(7):e41993
Erythropoietin (EPO), known for its role in erythroid differentiation, has been shown to be an important growth factor for brain and heart. EPO is synthesized by fibroblast-like cells in the renal cortex. Prompted by this anatomical relationship and its significant impact on the maturation process of brain and heart, we asked whether EPO could play a role during the development of renal cortex. The relationship between the development of renal cortex and the change of EPO receptor (EPOR), through which EPO could act as a renotropic cytokine, became interesting to us. In this study, the day of birth was recorded as postnatal day 0(P0). P7, P14, P21, P28, P35, P42 and mature mice (postnatal days>56) were used as the animal model of different developmental stages. Immunohistochemistry and Western blotting were used to detect the expression of EPOR in mouse renal cortex. Results showed that expression of EPOR decreased with the development of renal cortex and became stable when kidney became mature. The expression of EPOR was detected at the renal tubule of all developmental stages and a relatively higher expression was observed at P14. However, at the renal corpuscle the expression was only observed at P7 and quickly became undetectable after that. All these suggested that a translocation of EPOR from renal corpuscle to renal tubule may take place during the developmental process of renal cortex. Also, EPO may be an essential element for the maturation of renal cortex, and the requirement for EPO was changed during postnatal development process.  相似文献   

4.

Background

During postnatal murine and rodent cerebellar development, cerebellar granule precursors (CGP) gradually stop proliferating as they differentiate after migration to the internal granule layer (IGL). Molecular events that govern this program remain to be fully elucidated. GPR3 belongs to a family of Gs-linked receptors that activate cyclic AMP and are abundantly expressed in the adult brain.

Methodology/Principal Findings

To investigate the role of this orphan receptor in CGP differentiation, we determined that exogenous GPR3 expression in rat cerebellar granule neurons partially antagonized the proliferative effect of Sonic hedgehog (Shh), while endogenous GPR3 inhibition by siRNA stimulated Shh-induced CGP proliferation. In addition, exogenous GPR3 expression in CGPs correlated with increased p27/kip expression, while GPR3 knock-down led to a decrease in p27/kip expression. In wild-type mice, GPR3 expression increased postnatally and its expression was concentrated in the internal granular layer (IGL). In GPR3 −/− mice, the IGL was widened with increased proliferation of CGPs, as measured by bromodeoxyuridine incorporation. Cell cycle kinetics of GPR3-transfected medulloblastoma cells revealed a G0/G1 block, consistent with cell cycle exit.

Conclusions/Significance

These results thus indicate that GPR3 is a novel antiproliferative mediator of CGPs in the postnatal development of murine cerebellum.  相似文献   

5.
The early postnatal development of the A-layers of the dorsal lateral geniculate nucleus (LGNd) was investigated in kittens aged 0–34 days by immunohistochemistry for the selective marker for neuronal differentiation (NeuN protein) and parvalbumin. We report two new facts about the LGNd development. First, there is a transient stratification of NeuN labelling in layer A, and to a lesser extent in layer A1, in kittens aged 0 and 4 days. Second, a transient population of large cells that are located between the LGNd A-layers (interlaminar cells) showed high expression levels of both NeuN and parvalbumin. These neurons possessed both the morphological and immunohistochemical features, similar to cells in the neighbouring perigeniculate nucleus. Both NeuN-stratification and double-stained interlaminar cells gradually disappeared during the second postnatal week, and almost completely vanished by the opening of the critical period. We discuss a possible linkage between these observed transitory networks and the ON-/OFF- and X-/Y-cells development and propose that the data obtained reflect the functioning of the early environmentally independent geniculate networks.  相似文献   

6.
7.
8.
During postnatal development, microglia, the resident innate immune cells of the central nervous system are constantly monitoring the brain parenchyma, cleaning the cell debris, the synaptic contacts overproduced and also maintaining the brain homeostasis. In this context, the postnatal microglia need some control over the innate immune response. One such molecule recently described to be involved in modulation of immune response is TREM2 (triggering receptor expressed on myeloid cells 2). Although some studies have observed TREM2 mRNA in postnatal brain, the regional pattern of the TREM2 protein has not been described. We therefore characterized the distribution of TREM2 protein in mice brain from Postnatal day (P) 1 to 14 by immunostaining. In our study, TREM2 protein was expressed only in microglia/macrophages and is developmentally downregulated in a region-dependent manner. Its expression persisted in white matter, mainly in caudal corpus callosum, and the neurogenic subventricular zone for a longer time than in grey matter. Additionally, the phenotypes of the TREM2+ microglia also differ; expressing CD16/32, MHCII and CD86 (antigen presentation markers) and CD68 (phagocytic marker) in different regions as well as with different intensity till P7. The mannose receptor (CD206) colocalized with TREM2 only at P1–P3 in the subventricular zone and cingulum, while others persisted at low intensities till P7. Furthermore, the spatiotemporal expression pattern and characterization of TREM2 indicate towards its other plausible roles in phagocytosis, progenitor’s fate determination or microglia phenotype modulation during postnatal development. Hence, the increase of TREM2 observed in pathologies may recapitulate their function during postnatal development, as a better understanding of this period may open new pathway for future therapies.  相似文献   

9.
The dynamics of the activities of 26S and 20S proteasomes in the rat liver and spleen have been studied during postnatal development from 1 to 90 days. The activities of proteasome forms both in spleen and in liver increased in adult animals as compared to one day rats. The activities of both proteasome forms in the liver did not differ significantly from those in the spleen at all stages of postnatal development. Using Western blot with monoclonal antibodies to Rpt6 subunit, we confirmed the presence of 26S proteasome in both organs at all stages of postnatal development. Studies with polyclonal antibodies to β1i (LMP2) subunit showed the appearance of the immune subunit in the spleen by day 9 and in the liver only by day 23 of postnatal development. This result suggests the earlier formation of the spleen as an organ with immune functions.__________Translated from Ontogenez, Vol. 36, No. 3, 2005, pp. 205–210.Original Russian Text Copyright © 2005 by Abramova, Astakhova, Sharova.  相似文献   

10.
The influence of isolation on ♂-♀♀ relationships was investigated. Animals isolated between 90 and 200 days of age showed more agonistic behaviour in paired encounters than controls. This difference disappeared when the animals had been housed with a cagemate. A secondary isolation late in life resulted in a more rapid onset of agonistic behaviour in the early isolates than in the controls. Thus it is concluded that the early isolation had a lasting influence, which only became evident after renewed isolation treatment.  相似文献   

11.
12.
Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in promoting angiogenesis throughout the central nervous system. To determine the roles that astrocytes may play during brain angiogenesis, we employ genetic approaches to inhibit astrogliogenesis during perinatal corticogenesis and examine its effects on brain vessel development. We find that conditional deletion from glial progenitors of orc3, a gene required for DNA replication, dramatically reduces glial progenitor cell number in the subventricular zone and astrocytes in the early postnatal cerebral cortex. This, in turn, results in severe reductions in both the density and branching frequency of cortical blood vessels. Consistent with a delayed growth but not regression of vessels, we find neither significant net decreases in vessel density between different stages after normalizing for cortical expansion nor obvious apoptosis of endothelial cells in these mutants. Furthermore, concomitant with loss of astroglial interactions, we find increased endothelial cell proliferation, enlarged vessel luminal size as well as enhanced cytoskeletal gene expression in pericytes, which suggests compensatory changes in vascular cells. Lastly, we find that blood vessel morphology in mutant cortices recovers substantially at later stages, following astrogliosis. These results thus implicate a functional requirement for astroglia in promoting blood vessel growth during brain development.  相似文献   

13.
The circling (cir/cir) mouse is a murine model for human nonsyndromic deafness DFNB6. Transmembrane inner ear (tmie) is the causative gene and its mutation through deletion of a 40-kilobase genomic region including tmie leads to deafness. The function of Tmie is unknown. To better understand the function of Tmie, we focused on the spatiotemporal expression of tmie in the rat cochlea by using a Tmie-specific antibody. Results showed that tmie expression was prominent in early postnatal rat cochleas in the stereocilia bundles of hair cells. The Tmie signal spread from the stereocilia to the hair cell body region and on to organ of Corti cells. No Tmie signal was observed in cell nuclei; Tmie was localized to the cytoplasm. Because Tmie is predicted to have 1 or 2 transmembrane domains, we postulate that it is localized to membrane-based organelles or the plasma membrane. Our results imply that Tmie exists in the cytoplasm and may have a key role in the maturation and structure of stereocilia bundles in developing hair cells. After hair cell maturation, Tmie is thought to be involved in the maintenance of organ of Corti cells.Circling is often observed in mouse and rat deafness mutants and is commonly suggested to be a consequence of inner ear defects that impair vestibular systems.3,12,14 The circling (cir/cir) mouse is a murine model for human nonsyndromic deafness DFNB6; these mice have abnormal circling behavior, suggesting a balance disorder, and profound deafness.6,7 The most notable pathologic phenotypes of circling mice are the almost completely degenerated cochlea and remarkably reduced cellularity in spiral ganglion neurons. The causative gene for circling is transmembrane inner ear (tmie), with a 40-kilobase genomic deletion including tmie.1 tmie is also the causative gene of the spinner (sr/sr) mouse, which has phenotypes similar to circling mice, although the mutation patterns are different.8 Spinner mice also show circling behavior, hearing loss, imbalance, and swimming inability. In addition, spinner mice have 2 mutations in the tmie gene: the 40-kb genomic deletion including tmie and a point mutation that leads to a truncated protein.8In humans, 7 different homozygous recessive mutations in TMIE currently are known to exist in affected members of consanguineous families segregating severe-to-profound prelingual deafness, consistent with linkage to DFNB6.9,10 Although the functions of murine Tmie and human TMIE are unknown, this protein appears to be important for normal hearing and vestibular function.In a previous study, we produced transgenic mice overexpressing tmie that resulted in phenotypic rescue of circling.11 Normal expression of transgenic tmie induced phenotypic rescue in circling homozygous mutants, although some mice did not show amelioration of abnormal behavior, hearing ability, or tissue morphology in the inner ear. Therefore the Tmie protein is required for normal inner ear function in mouse.11To better understand the function of Tmie, we focused on the spatiotemporal expression of tmie. Knowing when, where, and to what extent this protein is produced in the developing inner ear will provide important clues to protein function. In adult mouse and rat, tmie is expressed in various tissues.2,13 Whether Tmie plays an important role in those tissues is uncertain, because circling mice that lack the entire tmie gene have no noteworthy problems in any tissues except those of the inner ear systems.6In this study, we were interested in the postnatal stages before and after the onset of hearing (around postnatal day [P] 12) in rats; therefore, the postnatal period P0 to19 was studied. Although all the cells that form the mature cochlea are present at birth, important conformational changes occur during this period, including the formation of the tunnel of Corti and the establishment or retraction of neuronal connections. The expression pattern of tmie in the developing inner ear during early postnatal development has not been investigated previously. Here we document our use of a Tmie-specific antibody to elucidate the spatial and temporal expression of tmie in the rat inner ear during postnatal development.  相似文献   

14.
15.
To discover the laws of development of subjective experience, we must study the relationships between affective and intellectual processes in that experience (Vygotsky, 1981). Changes in this relationship and the formation of new interfunctional interactions during the course of emotional development shape the dynamic of such experiences and give rise to qualitatively new types.  相似文献   

16.
Northern blot and "dot" blot analyses using a myelin basic protein (MBP) specific cDNA probe and in vitro translation techniques were utilized to estimate the relative levels of myelin basic protein messenger RNA (mRNA) in the brains of C57BL/6J control mice, three dysmyelinating mutants (qk/qk, jp/Y, and shi/shi), and three heterozygote controls (qk/+, jp/+, and shi+) during early postnatal development. In general, the MBP mRNA levels measured directly by Northern blot and "dot" blot analyses correlated well with the indirect in vitro translation measurements. The Northern blots indicated that the size of MBP mRNAs in quaking and jimpy brain polysomes appeared to be similar to controls. Very low levels of MBP mRNAs were observed in shi/shi brain polyribosomes throughout early postnatal development. Compared to C57BL/6J controls, accumulation of MBP mRNAs in qk/qk and qk/+ brain polyribosomes was delayed by several days. That is, whereas MBP mRNA levels were below normal between 12 and 18 days, normal levels of message had accumulated in both qk/qk and qk/+ brain polyribosomes by 21 days. Furthermore, normal levels of MBP mRNAs were observed to be maintained until at least 27 days. MBP mRNA levels remained well below control levels in jp/Y brain polyribosomes throughout early postnatal development. The levels did, however, fluctuate slightly and peaked at 15 days in both jp/Y and jp/+ brains, 3 days earlier than in normal mice. Thus, it appears that jimpy and quaking mice exhibit developmental patterns of MBP expression different from each other and from C57BL/6J control mice.  相似文献   

17.
18.
Companion animals provide an excellent model for studies of the gut microbiome because potential confounders such as diet and environment can be more readily controlled for than in humans. Additionally, domestic cats and dogs are typically neutered early in life, enabling an investigation into the potential effect of sex hormones on the microbiome. In a longitudinal study to investigate the potential effects of neutering, neutering age and gender on the gut microbiome during growth, the faeces of kittens (16 male, 14 female) were sampled at 18, 30 and 42 weeks of age. DNA was shotgun sequenced on the Illumina platform and sequence reads were annotated for taxonomy and function by comparison to a database of protein coding genes. In a statistical analysis of diversity, taxonomy and functional potential of the microbiomes, age was identified as the only factor with significant associations. No significant effects were detected for gender, neutering, or age when neutered (19 or 31 weeks). At 18 weeks of age the microbiome was dominated by the genera Lactobacillus and Bifidobacterium (35% and 20% average abundance). Structural and functional diversity was significantly increased by week 30 but there was no further significant increase. At 42 weeks of age the most abundant genera were Bacteroides (16%), Prevotella (14%) and Megasphaera (8%). Significant differences in functional potential included an enrichment for genes in energy metabolism (carbon metabolism and oxidative phosphorylation) and depletion in cell motility (flagella and chemotaxis). We conclude that the feline faecal microbiome is predominantly determined by age when diet and environment are controlled for. We suggest this finding may also be informative for studies of the human microbiome, where control over such factors is usually limited.  相似文献   

19.
During early postnatal life, extensive changes in gene expression occur concomitantly in multiple major organs, indicating the existence of a common core developmental genetic program. This program includes hundreds of growth-promoting genes that are downregulated with age in liver, kidney, lung, and heart, and there is evidence that this component of the program drives the widespread decline in cell proliferation that occurs in juvenile life, as organs approach adult sizes. To investigate epigenetic changes that might orchestrate this program, we performed chromatin immunoprecipitation-promoter tiling array to assess temporal changes in histone H3K4 and H3K27 trimethylation (me3) at promoter regions throughout the genome in kidney and lung, comparing 1- to 4-wk-old mice. We found extensive genome-wide shifts in H3K4me3 and H3K27me3 occurring with age in both kidney and lung. The number of genes with concordant changes in the two organs was far greater than expected by chance. Temporal changes in H3K4me3 showed a strong, positive association with changes in gene expression, assessed by microarray, whereas changes in H3K27me3 showed a negative association. Gene ontology analysis indicated that shifts in specific histone methylation marks were associated with specific developmental functions. Of particular interest, genes with decreases in H3K4me3 with age in both organs were strongly implicated in cell cycle and cell proliferation functions. Taken together, the findings suggest that the common core developmental program of gene expression which occurs in multiple organs during juvenile life is associated with a common core developmental program of histone methylation. In particular, declining H3K4me3 is strongly associated with gene downregulation and occurs in the promoter regions of many growth-regulating genes, suggesting that this change in histone methylation may contribute to the component of the genetic program that drives juvenile body growth deceleration.  相似文献   

20.
Sympathetic innervation of the stomach was studied in rats by the method of retrograde axon transport of Fast Blue in postnatal ontogenesis. The number of labeled neurons increased in the first 10 days of life and then did not change until the senescence. All labeled neurons innervating the stomach contain the catecholamine synthesis enzyme, tyrosine hydroxylase. The proportion of labeled neuropeptide Y-immunopositive neurons did not change in the development, the percentage of labeled calbindin-immunoreactive neurons decreased in the first month of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号