首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Surface plasmon polariton (SPP) waves are the most extensively studied waves among various types of surface waves because they are easy to excite and have been used in many optical applications particularly for plasmonic communication, sensing, and harvesting solar energy. In all these applications, especially on-chip plasmonic communication, scattering can be an important issue to deal with. Therefore, this paper aimed to theoretically inspect the scattering pattern of SPP waves from a perfect electric conductor (PEC) cylindrical scatterer. The cylindrical wave approach is used to solve the scattering problem by a cylindrical object placed below a metallic layer. The scattering is investigated thoroughly by changing the size of the scatterer and its distance from the interface along which the SPP wave is excited. As the size of the scatterer increases, the scattering increases significantly. On the other hand, when the distance of the scatterer from the interface is increased, the scattered field becomes small. Two-dimensional field maps are produced for the incident angle at which SPP is excited. Numerical results are also presented for other incident angles to make a comparison. Furthermore, the forward and backward far-fields are significantly enhanced if the SPP wave is scattered in comparison with when the SPP wave is not present.

  相似文献   

2.
P Dumas  M Bergdoll  C Cagnon    J M Masson 《The EMBO journal》1994,13(11):2483-2492
The antibiotic bleomycin, a strong DNA cutting agent, is naturally produced by actinomycetes which have developed a resistance mechanism against such a lethal compound. The crystal structure, at 2.3 A resolution, of a bleomycin resistance protein of 14 kDa reveals a structure in two halves with the same alpha/beta fold despite no sequence similarity. The crystal packing shows compact dimers with a hydrophobic interface and involved in mutual chain exchange. Two independent solution studies (analytical centrifugation and light scattering) showed that this dimeric form is not a packing artefact but is indeed the functional one. Furthermore, light scattering also showed that one dimer binds two antibiotic molecules as expected. A crevice located at the dimer interface, as well as the results of a site-directed mutagenesis study, led to a model wherein two bleomycin molecules are completely sequestered by one dimer. This provides a novel insight into antibiotic resistance due to drug sequestering, and probably also into drug transport and excretion.  相似文献   

3.
We report the results of surface x-ray scattering measurements performed on urease and hexadecylamine-urease films at the air-aqueous solution interface. It is demonstrated that although hexadecylamine does not form a stable monolayer on the pure aqueous surface, it does self-assemble into a stable, well-organized structure when spread on top of a urease film at the air-water interface. It is also likely that protein and hexadecylamine domains coexist at the interface.  相似文献   

4.
We present a quantum-mechanical model for surface-assisted carrier excitation by optical fields in plasmonic nanostructures of arbitrary shape. We derive an explicit expression, in terms of local fields inside the metal structure, for surface absorbed power and surface scattering rate that determine the enhancement of carrier excitation efficiency near the metal-dielectric interface. We show that surface scattering is highly sensitive to the local field polarization and can be incorporated into metal-dielectric function along with phonon and impurity scattering. We also show that the obtained surface scattering rate describes surface-assisted plasmon decay (Landau damping) in nanostructures larger than the nonlocality scale. Our model can be used for calculations of plasmon-assisted hot carrier generation rates in photovoltaics and photochemistry applications.  相似文献   

5.
A novel method for the acquisition of surface enhanced Raman (SER) spectra of model membranes of dipalmitoylphosphatidic acid (DPPA) in Langmuir layers at the air-water interface is reported. The approach is based on the electrochemical formation of a buoyant thin layer of coalesced silver colloids in the vicinity of the phosphatidic acid head groups at the interface. This Ag layer is an excellent platform for SER scattering, which shows the spectral features from all parts of the molecule and water between the Ag surface and the DPPA layer. The observation of the spectral response from the phosphatidic acid head groups is of particular significance, allowing insight into their chemical state and orientation at the air-water interface.  相似文献   

6.
The formation of thaumatin crystals by Langmuir-Blodgett (LB) film nanotemplates was studied by the hanging-drop technique in a flow-through cell by synchrotron radiation micrograzing-incidence small-angle x-ray scattering. The kinetics of crystallization was measured directly on the interface of the LB film crystallization nanotemplate. The evolution of the micrograzing-incidence small-angle x-ray scattering patterns suggests that the increase in intensity in the Yoneda region is due to protein incorporation into the LB film. The intensity variation suggests several steps, which were modeled by system dynamics based on first-order differential equations. The kinetic data can be described by two processes that take place on the LB film, a first, fast, process, attributed to the crystal growth and its detachment from the LB film, and a second, slower process, attributed to an unordered association and conversion of protein on the LB film.  相似文献   

7.
alphaB-crystallin, a member of the small heat-shock protein family and a major eye lens protein, is a high molecular mass assembly and can act as a molecular chaperone. We report a synchrotron radiation x-ray solution scattering study of a truncation mutant from the human alphaB-crystallin (alphaB57-157), a dimeric protein that comprises the alpha-crystallin domain of the alphaB-crystallin and retains a significant chaperone-like activity. According to the sequence analysis (more than 23% identity), the monomeric fold of the alpha-crystallin domain should be close to that of the small heat-shock protein from Methanococcus jannaschii (MjHSP16.5). The theoretical scattering pattern computed from the crystallographic model of the dimeric MjHSP16.5 deviates significantly from the experimental scattering by the alpha-crystallin domain, pointing to different quaternary structures of the two proteins. A rigid body modeling against the solution scattering data yields a model of the alpha-crystallin domain revealing a new dimerization interface. The latter consists of a strand-turn-strand motif contributed by each of the monomers, which form a four-stranded, antiparallel, intersubunit composite beta-sheet. This model agrees with the recent spin labeling results and suggests that the alphaB-crystallin is composed by flexible building units with an extended surface area. This flexibility may be important for biological activity and for the formation of alphaB-crystallin complexes of variable sizes and compositions.  相似文献   

8.
Inherent flexibility and conformational heterogeneity in proteins can often result in the absence of loops and even entire domains in structures determined by x-ray crystallographic or NMR methods. X-ray solution scattering offers the possibility of obtaining complementary information regarding the structures of these disordered protein regions. Methods are presented for adding missing loops or domains by fixing a known structure and building the unknown regions to fit the experimental scattering data obtained from the entire particle. Simulated annealing was used to minimize a scoring function containing the discrepancy between the experimental and calculated patterns and the relevant penalty terms. In low-resolution models where interface location between known and unknown parts is not available, a gas of dummy residues represents the missing domain. In high-resolution models where the interface is known, loops or domains are represented as interconnected chains (or ensembles of residues with spring forces between the C(alpha) atoms), attached to known position(s) in the available structure. Native-like folds of missing fragments can be obtained by imposing residue-specific constraints. After validation in simulated examples, the methods have been applied to add missing loops or domains to several proteins where partial structures were available.  相似文献   

9.
We report on the solvation properties and intermolecular interactions of a model protein (bovine serum albumine, BSA) in urea aqueous solutions, as obtained by combining small-angle neutron and X-ray scattering experiments. According to a global fit strategy, all the whole set of scattering curves are analysed by considering a unique model which includes the BSA structure, the protein-protein interactions and the thermodynamic exchange process of water/urea molecules at the protein solvent interface. As a main result, the equilibrium constant that accounts for the difference in composition between the bulk solvent and the protein solvation layer is derived. Results confirm that urea preferentially sticks to the protein surface, inducing a noticeable change in both the repulsive and the attractive interaction potentials.  相似文献   

10.
Insulin aggregation in solution   总被引:1,自引:0,他引:1  
The process of insulin aggregation in neutral solutions was studied by dynamic light scattering. Solutions of different concentrations were subjected to thermal and mechanical stress (37 degrees, rotation) for a period of 4 weeks. The starting solutions contained exclusively one particle distribution of insulin in the association equilibrium with hexamers as the largest structures. After a lag period of about 8 days the solutions showed continuously increasing scattering intensities but did not evolve perceptible turbidity within the experimental period. A more rapid increase in scattering intensity was observed in diluted than in concentrated solutions. The analysis of scattering data unexpectedly revealed that insulin species did not grow continuously. After the lag period one additional relatively restricted size distribution with particles of a mean radius of about 100 nm was found, the amount of which increased continuously with time. The occurrence of these particles seems to be related to adsorption phenomena of insulin to the solid interface. We assume the 100 nm-class of aggregates to be a transient state in the physical destabilization process of insulin solutions.  相似文献   

11.
Previous neutron scattering studies elaborated the topographical relationship of the regulatory (R(IIalpha)) and catalytic (C(alpha)) subunits of the cAMP-dependent protein kinase. We present here the results of a set of computations that lead to an atomic model of the cAMP-dependent protein kinase heterodimer, Delta(1-91)R(IIalpha)-C(alpha). The first step in the modeling utilized the crystal structures for the porcine C(alpha) and bovine Delta(1-90)R(Ialpha) or rat Delta(1-111)R(IIbeta), to homology-model structures of the species and isoforms that had been used in the neutron scattering experiments (bovine C(alpha) subunit and murine Delta(1-91)R(IIalpha) subunit, respectively). A docking procedure, constrained by the dimensions and positions of the ellipsoids in the neutron-derived R-C model as well as mutagenesis data, was used to develop "best fit" models for the heterodimer. Simulated annealing, molecular dynamics, and energy minimization were then used to refine the side chain packing at the heterodimer interface. For comparison, the calculations were done using the homology models derived from both the R(Ialpha) and R(IIbeta) crystal structures. Both resultant models had many similarities. Each predicted similar interfaces. The R(Ialpha)-based model has 25% more hydrogen bonds than that based on R(IIbeta), with seven of these potential bonds in common. The distribution of hydrophobic, polar, and charged residues at the interface was similar for both models, with a distribution more characteristic of the exposed surface residues than those in the protein interior. The calculated interface area in each is relatively small (<2000 A(2)). The R(Ialpha)-based model, however, has a significantly better fit with the scattering data and is therefore the one of distinctly higher probability. With its small interface area that has a high proportion of charged and polar residues, the complex appears poised for dissociation, and each subunit existing as a stable entity. This result is consistent with the known physiological events required for cAMP-dependent activation of the kinase.  相似文献   

12.
The high-amplitude swelling of mitochondria is critically considered. In contrast to numerous statements by some authors about a marked swelling of isolated liver mitochondria under the influence of palmitic acid, calcium ions, or hypotension, we have shown that mitochondria are generally not subject to highamplitude swelling. According to optical-microscopy data even during long-lasting incubation (in distilled water) where full hypotension takes place, the size of liver mitochondria (approximately 1 µm) can be enlarged by no more than by 40%. Under short-lasting hypotension or the addition of palmitic acid the mitochondrial diameter becomes greater by only 20% or remains virtually unchanged. The light scattering of the mitochondrial suspension measured using a photometer according to the decrease in optical density declines by 2.5 times. A decrease in the light scattering in hypotension or via the addition of palmitic acid or calcium (in an isotonic medium) occurs because of damage (even destruction) to the outer membrane, rather than due to the swelling of mitochondria, as was previously believed. The inner membrane is not significantly expanded. The destruction of the outer membrane reduces the probability of light scattering by each mitochondrion at the boundary layer of the water/membrane interface. Release of substances from the matrix resulting in a decrease of its refractive index may additionally contribute to the decrease in light scattering. Palmitic acid and calcium (at concentrations of 10 to 100 µM) cause permeabilization and disruption of the outer membrane gradually, over several minutes. Full hypotension activates this process very rapidly, viz., within a fraction of a second. Under low ionic-strength conditions, the addition of calcium leads to neutralization of negative charges on the membrane surface, which induces aggregation of mitochondria, thus enhancing light scattering and creating the illusion of mitochondrial swelling.  相似文献   

13.
Human ceruloplasmin is a copper containing serum glycoprotein with multiple functions. The crystal structure shows that its six domains are arranged in three pairs with a pseudo-ternary axis. Both the holo and apo forms of human ceruloplasmin were studied by size exclusion chromatography and small angle x-ray scattering in solution. The experimental curve of the holo form displays conspicuous differences with the scattering pattern calculated from the crystal structure. Once the carbohydrate chains and flexible loops not visible in the crystal are accounted for, remaining discrepancies suggest that the central pair of domains may move as a whole with respect to the rest of the molecule. The quasisymmetrical crystal structure therefore appears to be stabilized by crystal packing forces. Upon copper removal, the scattering pattern of human ceruloplasmin exhibits very large differences with that of the holoprotein, which are interpreted in terms of essentially preserved domains freely moving in solution around flexible linkers and exploring an ensemble of open conformations. This model, which is supported by the analysis of domain interfaces, provides a structural explanation for the differences in copper reincorporation into the apoprotein and activity recovery between human ceruloplasmin and two other multicopper oxidases, ascorbate oxidase and laccase. Our results demonstrate that, beyond catalytic activity, the three-copper cluster at the N-terminal-C-terminal interface plays a crucial role in the structural stability of human ceruloplasmin.  相似文献   

14.
Non-structural protein 1 from influenza A virus, NS1A, is a key multifunctional virulence factor composed of two domains: an N-terminal double-stranded RNA (dsRNA)-binding domain and a C-terminal effector domain (ED). Isolated RNA-binding and effector domains of NS1A both exist as homodimers in solution. Despite recent crystal structures of isolated ED and full-length NS1A proteins from different influenza virus strains, controversy remains over the actual biologically relevant ED dimer interface. Here, we report the biophysical properties of the NS1A ED from H3N2 influenza A/Udorn/307/1972 (Ud) virus in solution. Several lines of evidence, including (15)N NMR relaxation, NMR chemical shift perturbations, static light scattering, and analytical sedimentation equilibrium, demonstrate that Ud NS1A ED forms a relatively weak dimer in solution (K(d) = 90 ± 2 μm), featuring a symmetric helix-helix dimer interface. Mutations within and near this interface completely abolish dimerization, whereas mutations consistent with other proposed ED dimer interfaces have no effect on dimer formation. In addition, the critical Trp-187 residue in this interface serves as a sensitive NMR spectroscopic marker for the concentration-dependent dimerization of NS1A ED in solution. Finally, dynamic light scattering and gel shift binding experiments demonstrate that the ED interface plays a role in both the oligomerization and the dsRNA binding properties of the full-length NS1A protein. In particular, mutation of the critical tryptophan in the ED interface substantially reduces the propensity of full-length NS1A from different strains to oligomerize and results in a reduction in dsRNA binding affinity for full-length NS1A.  相似文献   

15.
Diflavin reductases are bidomain electron transfer proteins in which structural reorientation is necessary to account for the various intramolecular and intermolecular electron transfer steps. Using small-angle x-ray scattering and nuclear magnetic resonance data, we describe the conformational free-energy landscape of the NADPH-cytochrome P450 reductase (CPR), a typical bidomain redox enzyme composed of two covalently-bound flavin domains, under various experimental conditions. The CPR enzyme exists in a salt- and pH-dependent rapid equilibrium between a previously described rigid, locked state and a newly characterized, highly flexible, unlocked state. We further establish that maximal electron flux through CPR is conditioned by adjustable stability of the locked-state domain interface under resting conditions. This is rationalized by a kinetic scheme coupling rapid conformational sampling and slow chemical reaction rates. Regulated domain interface stability associated with fast stochastic domain contacts during the catalytic cycle thus provides, to our knowledge, a new paradigm for improving our understanding of multidomain enzyme function.  相似文献   

16.
Monolayers of lipids have been studied for more than a century. During the past decade new insight into the field has resulted from the development of surface sensitive X-ray scattering methods utilizing synchrotron radiation: grazing-incidence X-ray diffraction (GIXD) and specular X-ray reflectivity (XR). These novel methods provide direct microscopic information about the systems in question and allow in situ investigations under near physiological conditions. GIXD gives information about the in-plane molecular structure, e.g., lattice symmetry and structural parameters; XR provides the electron density profile across the interface. The present review describes the theory, experimental procedures and sample requirements for surface sensitive X-ray scattering. An overview of recent results is presented as well, with special emphasis on biologically important systems, e.g., investigations by GIXD and/or XR of lipid and protein structures at interfaces and of lipid/protein interactions.  相似文献   

17.
J Cherfils  P Vachette  P Tauc    J Janin 《The EMBO journal》1987,6(9):2843-2847
Mutation pAR5 replaces residues 145'-153' at the C terminus of the regulatory (r) chains of Escherichia coli ATCase by a new sequence of six residues. The mutated enzyme has been shown to lack substrate cooperativity and inhibition by CTP. Solution X-ray scattering curves demonstrate that, in the absence of ligands, its structure is intermediate between the T form and the R form. In the presence of N-phosphonacetyl-L-aspartate, the mutant is similar to the wild type. An examination of the crystal structure of unligated ATCase reveals that the mutated site is at an interface between r and catalytic (c) chains, which exists only in the T allosteric form. A computer simulation by energy minimization suggests that the pAR5 mutation destabilizes this interface and induces minor changes in the tertiary structure of r chains. The resulting lower stability of the T form explains the loss of substrate cooperativity. The lack of allosteric inhibition may be related to a new electrostatic interaction made in mutant r chains between the C-terminal carboxylate and a lysine residue of the allosteric domain.  相似文献   

18.
Neuroligins are postsynaptic cell-adhesion proteins that associate with their presynaptic partners, the neurexins. Using small-angle X-ray scattering, we determined the shapes of the extracellular region of several neuroligin isoforms in solution. We conclude that the neuroligins dimerize via the characteristic four-helix bundle observed in cholinesterases, and that the connecting sequence between the globular lobes of the dimer and the cell membrane is elongated, projecting away from the dimer interface. X-ray scattering and neutron contrast variation data show that two neurexin monomers, separated by 107 A, bind at symmetric locations on opposite sides of the long axis of the neuroligin dimer. Using these data, we developed structural models that delineate the spatial arrangements of different neuroligin domains and their partnering molecules. As mutations of neurexin and neuroligin genes appear to be linked to autism, these models provide a structural framework for understanding altered recognition by these proteins in neurodevelopmental disorders.  相似文献   

19.
Data from small-angle X-ray and neutron scattering and ultracentrifugation experiments on solutions of malate dehydrogenase from Halobacterium maris mortui are analysed together to yield a model for the enzyme particle formed by the protein and its interactions with water and salt in the solvent. The halophilic enzyme is stable only in high concentrations of salt and the model has structural features that are absent from non-halophilic malate dehydrogenase. The complementarity of the information derived from the three experimental methods is discussed extensively and quantitatively. It derives from the fact that mass density (ultracentrifugation), electron density (X-rays) and neutron scattering density are independent of each other. Each method gives a different "view" of the same particle, and an analysis of the combined data provided thermodynamic and structural parameters with, apart from the chemical composition of the solutions, only one other assumption: a constant partial specific volume for water equal to 1.00 cm3 g-1. Both the insights gained by this novel approach and its limitations are carefully pointed out. In solvents between 1 M and 5 M-NaCl, the enzyme forms a particle of invariant volume, consisting of a protein dimer (87,000 g mol-1) with which are associated 0.87 g of water and 0.35 g of salt per gram of protein. The partial specific volume of the protein calculated from the combined experimental data is 0.753(+/- 0.030) cm3 g-1, in good agreement with the value calculated from the amino acid composition. The particle has a radius of gyration of 32 A and an equivalent Stokes radius of 43 A. By combining the data from the X-ray and neutron scattering studies, the radii of gyration of the protein moiety alone and of the associated water and salt distribution were calculated. They are 28 A and about 40 A, respectively. The large-angle scattering curves show that the shapes of the particle and of the protein moiety alone are similar. At very low resolution they can be approximated by an ellipsoid of axial ratio 1:1:0.6 (or 1:1:1.5). At higher resolution, it becomes apparent that the particle has a significantly larger interface with solvent than an homogeneous ellipsoid or globular protein. The model has a globular protein core similar to non-halophilic malate dehydrogenase, with about 20% of the protein extending loosely out of the core, forming the large interface with solvent. The main interactions with water and salt take place on this outer part.  相似文献   

20.
Takata T  Oxford JT  Brandon TR  Lampi KJ 《Biochemistry》2007,46(30):8861-8871
According to the World Health Organization, cataracts account for half of the blindness in the world, with the majority occurring in developing countries. A cataract is a clouding of the lens of the eye due to light scattering of precipitated lens proteins or aberrant cellular debris. The major proteins in the lens are crystallins, and they are extensively deamidated during aging and cataracts. Deamidation has been detected at the domain and monomer interfaces of several crystallins during aging. The purpose of this study was to determine the effects of two potential deamidation sites at the predicted interface of the betaA3-crystallin dimer on its structure and stability. The glutamine residues at the reported in vivo deamidation sites of Q180 in the C-terminal domain and at the homologous site Q85 in the N-terminal domain were substituted with glutamic acid residues by site-directed mutagenesis. Far-UV and near-UV circular dichroism spectroscopy indicated that there were subtle differences in the secondary structure and more notable differences in the tertiary structure of the mutant proteins compared to that of the wild type betaA3-crystallin. The Q85E/Q180E mutant also was more susceptible to enzymatic digestion, suggesting increased solvent accessibility. These structural changes in the deamidated mutants led to decreased stability during unfolding in urea and increased precipitation during heat denaturation. When simulating deamidation at both residues, there was a further decrease in stability and loss of cooperativity. However, multiangle-light scattering and quasi-elastic light scattering experiments showed that dimer formation was not disrupted, nor did higher-order oligomers form. These results suggest that introducing charges at the predicted domain interface in the betaA3 homodimer may contribute to the insolubilization of lens crystallins or favor other, more stable, crystallin subunit interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号