首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The terminase enzyme from bacteriophage lambda is composed of two viral proteins (gpA, 73.2 kDa; gpNu1, 20.4 kDa) and is responsible for packaging viral DNA into the confines of an empty procapsid. We are interested in the genetic, biochemical, and biophysical properties of DNA packaging in phage lambda and, in particular, the nucleoprotein complexes involved in these processes. These studies require the routine purification of large quantities of wild-type and mutant proteins in order to probe the molecular mechanism of DNA packaging. Toward this end, we have constructed a hexahistidine (hexa-His)-tagged terminase holoenzyme as well as hexa-His-tagged gpNu1 and gpA subunits. We present a simple, one-step purification scheme for the purification of large quantities of the holoenzyme and the individual subunits directly from the crude cell lysate. Importantly, we have developed a method to purify the highly insoluble gpNu1 subunit from inclusion bodies in a single step. Hexa-His terminase holoenzyme is functional in vivo and possesses steady-state and single-turnover ATPase activity that is indistinguishable from wild-type enzyme. The nuclease activity of the modified holoenzyme is near wild type, but the reaction exhibits a greater dependence on Escherichia coli integration host factor, a result that is mirrored in vivo. These results suggest that the hexa-His-tagged holoenzyme possesses a mild DNA-binding defect that is masked, at least in part, by integration host factor. The mild defect in hexa-His terminase holoenzyme is more significant in the isolated gpA-hexa-His subunit that does not appear to bind DNA. Moreover, whereas the hexa-His-tagged gpNu1 subunit may be reconstituted into a holoenzyme complex with wild-type catalytic activities, gpA-hexa-His is impaired in its interactions with the gpNu1 subunit of the enzyme. The results reported here underscore that a complete biochemical characterization of the effects of purification tags on enzyme function must be performed prior to their use in mechanistic studies.  相似文献   

2.
The form of succinyl-CoA synthetase found in mammalian mitochondria is known to be an alpha beta dimer. Both GTP- and ATP-specific isozymes are present in various tissues. We have isolated essentially identical complementary DNA clones encoding the beta subunit of pig heart succinyl-CoA synthetase from both newborn and adult tissues. These cDNAs include a 1.4-kb sequence encoding the cytoplasmic precursor to the beta subunit comprised of 417 amino acid residues including a 22-residue mitochondrial targeting sequence. The cDNA encoding the 395-amino acid, 42,502-Da mature protein was confirmed to be the succinyl-CoA synthetase beta subunit by agreement with the N-terminal protein sequence and by high homology to prokaryotic forms of the beta subunit that were previously cloned (about 45% identical to beta from Escherichia coli). In contrast to a previous report (Nishimura, J.S., Ybarra, J., Mitchell, T., & Horowitz, P.M., 1988, Biochem. J. 250, 429-434), we found no tryptophan residue to be encoded in the sequence for the mature beta subunit, and this finding is corroborated by the fact that highly purified pig heart succinyl-CoA synthetase shows no tryptophan fluorescence or tryptophan content in amino acid compositional analysis. The cDNA clones encoding the mature pig heart beta subunit and its counterpart alpha subunit were coexpressed in a deletion mutant strain of E. coli. Recovery of succinyl-CoA synthetase activity demonstrated that this combination of subunits forms a productive enzymatic complex having GTP specificity.  相似文献   

3.
GDP-mannose is the mannosyl donor for the glycosylation reactions and is synthesized by GDP-mannose pyrophosphorylase from GTP and d-mannose-1-phosphate; in Saccharomyces cerevisiae this enzyme is encoded by the PSA1/VIG9/SRB1 gene. We isolated the Kluyveromyces lactis KlPSA1 gene by complementing the osmotic growth defects of S. cerevisiae srb1/psa1 mutants. KlPsa1p displayed a high degree of similarity with other GDP-mannose pyrophosphorylases and was demonstrated to be the functional homologue of S. cerevisiae Psa1p. Phenotypic analysis of a K. lactis strain overexpressing the KlPSA1 gene revealed changes in the cell wall assembly. Increasing the KlPSA1 copy number restored the defects in O-glycosylation, but not those in N-glycosylation, that occur in K. lactis cells depleted for the hexokinase Rag5p. Overexpression of GDP-mannose pyrophosphorylase also enhanced heterologous protein secretion in K. lactis as assayed by using the recombinant human serum albumin and the glucoamylase from Arxula adeninivorans.  相似文献   

4.
The cellular mechanisms involved in chronic inflammatory processes are poorly understood. This is especially true for the role of macrophages, which figure prominently in the inflammatory response. Two proteins, MRP8 and MRP14, which are expressed in infiltrate macrophages during inflammatory reactions but not in normal tissue macrophages, have been characterized. Here we report that MRP8 and MRP14 mRNAs are specifically expressed in human cells of myeloid origin and that their expression is regulated during monocyte-macrophage and granulocyte differentiation. To initiate the analysis of cis-acting elements governing the tissue-specific expression of the MRP genes, we cloned the human genes encoding MRP8 and MRP14. Both genes contain three exons, are single copy, and have a strikingly similar organization. They belong to a novel subfamily of highly homologous calcium-binding proteins which includes S100 alpha, S100 beta, intestinal calcium-binding protein, P11, and calcyclin (2A9). A transient expression assay was devised to investigate the tissue-specific regulatory elements responsible for MRP gene expression after differentiation in leukemia HL60 cells. The results of this investigation demonstrated that the cis-acting elements responsible for MRP expression are present on the cloned DNA fragment containing the MRP gene loci.  相似文献   

5.
We have isolated a perchloric acid-soluble protein designated as PL-PSP from the post-mitochondria supernatant fraction of pig liver. It is soluble in 5% perchloric acid and purified by ammonium sulfate fractionation and CM-Sephadex chromatography. The PL-PSP showed approximately 80–90% homology with PSP isolated from rat liver (RL-PSP) with its partial amino acid sequences. The protein has a molecular mass of approximately 14 kDa which was slightly higher than that of RL-PSP. It inhibited protein synthesis in a rabbit reticulocyte lysate system. The expression of PL-PSP was predominant in liver, kidney and duodenum, and was also expressed in stomach, lung and brain. PL-PSP expression in liver increased from the 1st day to the 1st month. Thus, our findings are the first report on the presence of a PSP in porcine tissues which may be involved in the regulation of cellular growth and differentiation.  相似文献   

6.
The goal of this study was to characterize and quantify intestinal fatty acid-binding proteins of the pig. Small intestinal mucosa from 13-19 kg pigs was homogenized and centrifuged to obtain cytosol. Isolation of fatty acid-binding proteins from delipidated cytosol was achieved using molecular sieve, oleic acid affinity, and ion exchange chromatography. Fatty acid-binding protein isolation was monitored using a fatty-acid binding assay in conjunction with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. Antisera to rat liver-fatty acid-binding protein cross reacted with an isolated intestinal fatty acid-binding protein of Mr = 13,000, whereas antisera to rat intestine-fatty acid-binding protein was not cross reactive with isolated pig intestinal proteins. These experiments identify a pig intestinal fatty acid-binding protein that exhibits strong immunochemical similarity to rat liver-fatty acid-binding protein. Cytosol prepared from intestinal mucosa of pigs at -4, 2, 4, 7, 15, 22, 28, and 35 d of age was assayed for fatty acid-binding protein activity. Preweaning fatty acid-binding protein activity in cytosol was maximal at 7 days of age when expressed as total jejunal fatty acid binding per kilogram bodyweight, intestinal or mucosal weight or milligram total protein. After weaning (21 d), fatty acid-binding protein activities declined to 28 days, but increased again by 35 days. Total soluble fatty acid-binding protein activity in pig intestine is regulated during postnatal development and this may account in part for the altered intestinal absorption of lipids observed in young pigs at weaning.  相似文献   

7.
8.
Protein 1 from the outer membrane of Escherichia coli K-12 and protein 2 from a phage PA-2 lysogen of the same strain were isolated by differential sodium dodecyl sulfate extraction and purified by ion-exchange and gel filtration chromatography. Rabbit antisera were prepared against these proteins and showed no cross-reaction between proteins 1 and 2. The proteins have the same N-terminal amino acid but show small yet significant differences in amino acid composition. The proteins were cleaved with cyanogenbromide in solvents containing both formic acid and trifluoroacetic acid. By comparing the cleavage in these solvents, it was established that protein 1 yielded 5 cyanogen bromide peptides, and the sum of the molecular weights of these was equivalent to the molecular weight of the uncleaved protein. Protein 2 yielded 4 cyanogen bromide peptides, none of which was identical to those of protein 1, and the sum of these peptides was also equivalent to the apparent molecular weight of the uncleaved protein. Significant differences were also observed when tryptic peptides from the two proteins were compared. These results indicate that protein 1 and the phage-directed protein 2 are distinct, different, and apparently homogeneous proteins.  相似文献   

9.
Leishmania parasites synthesize a range of mannose-containing glycoconjugates thought to be essential for virulence in the mammalian host and sandfly vector. A prerequisite for the synthesis of these molecules is the availability of the activated mannose donor, GDP-Man, the product of the catalysis of mannose-1-phosphate and GTP by GDP-mannose pyrophosphorylase (GDP-MP). In contrast to the lethal phenotype in fungi, the deletion of the gene in Leishmania mexicana did not affect parasite viability but led to a total loss of virulence, making GDP-MP an ideal target for anti-Leishmania drug development. We show by immunofluorescence and subcellular fractionation that GDP-MP is a cytoplasmic protein, and we describe a colorimetric activity assay suitable for the high throughput screening of small molecule inhibitors. We expressed recombinant GDP-MP as a fusion with maltose-binding protein and separated the enzyme from maltose-binding protein by thrombin cleavage, ion-exchange, and size exclusion chromatography. Size exclusion chromatography and analytical ultracentrifugation studies demonstrate that GDP-MP self-associates to form an enzymatically active and stable hexamer. However, sedimentation studies show that the GDP-MP hexamer dissociates to trimers and monomers in a time-dependent manner, at low protein concentrations, at low ionic strength, and at alkaline pH. Circular dichroism spectroscopy reveals that GDP-MP is comprised of mixed alpha/beta structure, similar to its closest related homologue, N-acetyl-glucoseamine-1-phosphate uridyltransferase (Glmu) from Streptococcus pneumoniae. Our studies provide insight into the structure of a novel target for the development of anti-Leishmania drugs.  相似文献   

10.
Pig sphingomyelin synthase 1 (SMS1) cDNA was cloned, characterized and compared to the human ortholog. Porcine protein consists of 413 amino acids and displays a 97% sequence identity with human protein. A phylogenic tree of proteins reveals that porcine SMS1 is more closely related to bovine and rodent proteins than to human. Analysis of protein mass was higher than the theoretical prediction based on amino acid sequence suggesting a kind of posttranslational modification. Quantitative representation of tissue distribution obtained by real-time RT-PCR showed that it was widely expressed although important variations in levels were obtained among organs. Thus, the cardiovascular system, especially the heart, showed the highest value of all the tissues studied. Regional differences of expression were observed in the central nervous system and intestinal tract. Analysis of the hepatic mRNA and protein expressions of SMS1 following turpentine treatment revealed a progressive decrease in the former paralleled by a decrease in the protein concentration. These findings indicate the variation in expression in the different tissues might suggest a different requirement of Golgi sphingomyelin for the specific function in each organ and a regulation of the enzyme in response to turpentine-induced hepatic injury.  相似文献   

11.
In this study, we isolated a 25-kDa novel snake venom protein, designated ablomin, from the venom of the Japanese Mamushi snake (Agkistrodon blomhoffi). The amino-acid sequence of this protein was determined by peptide sequencing and cDNA cloning. The deduced sequence showed high similarity to helothermine from the Mexican beaded lizard (Heloderma horridum horridum), which blocks voltage-gated calcium and potassium channels, and ryanodine receptors. Ablomin blocked contraction of rat tail arterial smooth muscle elicited by high K+-induced depolarization in the 0.1-1 microm range, but did not block caffeine-stimulated contraction. Furthermore, we isolated three other proteins from snake venoms that are homologous to ablomin and cloned the corresponding cDNAs. Two of these homologous proteins, triflin and latisemin, also inhibited high K+-induced contraction of the artery. These results indicate that several snake venoms contain novel proteins with neurotoxin-like activity.  相似文献   

12.
Several soluble proteins that reside in the lumen of the ER contain a specific C-terminal sequence (KDEL) which prevents their secretion. This sequence may be recognized by a receptor that either immobilizes the proteins in the ER, or sorts them from other proteins at a later point in the secretory pathway and returns them to their normal location. To distinguish these possibilities, I have attached an ER retention signal to the lysosomal protein cathepsin D. The oligosaccharide side chains of this protein are normally modified sequentially by two enzymes to form mannose-6-phosphate residues; these enzymes do not act in the ER, but are thought to be located in separate compartments within (or near) the Golgi apparatus. Cathepsin D bearing the ER signal accumulates within the ER, but continues to be modified by the first of the mannose-6-phosphate forming enzymes. Modification is strongly temperature-dependent, which is also a feature of ER-to-Golgi transport. These results support the idea that luminal ER proteins are continuously retrieved from a post-ER compartment, and that this compartment contains N-acetylglucosaminyl-1-phosphotransferase activity.  相似文献   

13.
A UDP-glucose pyrophosphorylase (UGPase) gene from Acetobacter xylinum BRC5 has been cloned, sequenced, and expressed in Escherichia coli. The gene consists of 867 nucleotides and encodes a polypeptide of 289 amino acid residues with a calculated molecular mass of 31,493 Da. The amino acid sequences of the enzyme showed an 85.8% identity to those of an enzyme from A. xilinum ATCC 23768. A polyhistidine-UGPase fusion enzyme was expressed and purified from the transformed E. coli. The enzyme showed a 35,620-Da single protein band on SDS/PAGE and an about 160,000-Da protein band on 8-16% pore-gradient polyacrylamide gel, indicating the enzyme may be a tetramer or pentamer composed of four or five identical subunits. Kinetic analysis of the enzyme showed a typical Michaelis-Menten substrate saturation pattern, from which Km and Vmax were calculated to be 3.22 mM and 175.4 micromol x min(-1) x mg(-1) for UDP-glucose and 0.24 mM and 69.4 micromol x min(-1) x mg(-1) for PPi, respectively, required Mg2+ for maximal activity, and was inhibited by free pyrophosphate. Computer-aided comparison of the Acetobacter enzyme sequence with those of other bacterial enzymes found significant similarities among them and predicted that Lys84 is a catalytically important residue. Lys84 in the enzyme, which was also conserved in other bacterial enzyme sequences, was replaced by arginine or leucine. The K84R mutant enzyme was successfully expressed in E. coli and showed enzyme activity (63% of the wild-type enzyme activity), but K84L was not isolated in stable form. These results suggest that Lys84 is significant in not only catalysis but also maintenance of the active structure.  相似文献   

14.
A cDNA expression library constructed from day 9 embryonic liver was screened with a previously identified protein binding site in the flanking region of the liver-specific, estrogen-dependent avian apoVLDLII gene. Two of the clones isolated were shown to encode the chicken homolog of the Y-box binding protein, YB-1 (dbpb), which we have designated chkYB-1. This protein was originally identified in avian extracts by virtue of its ability to bind to two reverse CCAAT motifs in the Rous sarcoma virus enhancer. Since its identification, additional nucleic acid binding properties have been ascribed to its homologs, or closely related proteins, in other species. We have determined the sequence of chkYB-1, investigated its ability to bind to sites known to be involved in tissue-specific expression in the liver, and examined factors influencing its hepatic expression. These studies have demonstrated that the level of chkYB-1 mRNA in the liver decreases steadily throughout embryogenesis and for several weeks posthatching until adult levels are attained. We present several lines of evidence that YB-1 expression in the liver is positively associated with DNA synthesis or cell proliferation. Its binding characteristics indicate that the protein can interact specifically with a number of binding sites for liver-enriched or specific factors. In addition, although it is not particularly asymmetric in terms of base composition, we find a marked preference in binding to the pyrimidine-rich strand of these sites regardless of the presence or polarity of an intact CCAAT box. The increased levels of expression of YB-1 during proliferation combined with its binding characteristics suggest that it may be involved in the reduced expression of liver-specific genes observed at early stages of development or during liver regeneration.  相似文献   

15.
Outer membrane proteins O-8 and O-9 have been highly purified from a strain of Escherichia coli K-12 by Sephadex G-200 and DEAE-cellulose chromatographies. The amino acid compositions of the purified proteins were definitely different, although they showed marked similarities. The profiles of BrCN peptides of the two proteins were also different. None of the BrCN peptides were the same for the two proteins. Analysis of the first twelve N-terminal residues revealed that the two proteins are strikingly similar, but with differences in the third and the eleventh amino acid residues. It can be concluded that proteins O-8 and O-9 are products of different structural genes which developed by duplication of an ancestral genome followed by mutation.  相似文献   

16.
F Fang  J W Newport 《Cell》1991,66(4):731-742
Xenopus eggs contain two distinct cdc2 homologs of 34 and 32 kd. We show that the 32 kd cdc2 protein, like the 34 kd protein, is a kinase. However, unlike the 34 kd homolog, the 32 kd cdc2 kinase activity does not decrease dramatically at the end of mitosis. The 32 kd protein does not associate with mitotic cyclins B1 and B2 but does associate with cyclin A and a novel doublet of proteins of 54 kd that may regulate its activity. We also show that depletion of the 32 kd cdc2 homolog from a Xenopus extract blocks DNA replication, but does not inhibit entry into mitosis. By contrast, depletion of the 34 kd cdc2 homolog or absence of mitotic cyclins from an extract does not inhibit replication, but does block entry into mitosis. Our results indicate that in higher eukaryotes, DNA replication (G1-S) and mitosis (G2-M) may be controlled by distinctly different cdc2 proteins.  相似文献   

17.
18.
The ruvB genes of the highly divergent thermophilic eubacteria Thermus thermophilus and Thermotoga maritima were cloned, sequenced, and expressed in Escherichia coli. Both thermostable RuvB proteins were purified to homogeneity. Like E. coli RuvB protein, both purified thermostable RuvB proteins showed strong double-stranded DNA-dependent ATPase activity at their temperature optima (> or = 70 degrees C). In the absence of ATP, T. thermophilus RuvB protein bound to linear double-stranded DNA with a preference for the ends. Addition of ATP or gamma-S-ATP destabilized the T. thermophilus RuvB-DNA complexes. Both thermostable RuvB proteins displayed helicase activity on supercoiled DNA. Expression of thermostable T. thermophilus RuvB protein in the E. coli ruvB recG mutant strain N3395 partially complemented the UV-sensitive phenotype, suggesting that T. thermophilus RuvB protein has a function similar to that of E. coli RuvB in vivo.  相似文献   

19.
The monoglycerol acyltransferase (EC 2.3.1.22) (recommended name acylglycerol palmitoltransferase) activities from rat intestinal mucosa and suckling liver microsomes were compared in order to determine why substrate specificities differed in the two tissues. Suckling liver monoacylglycerol acyltransferase activity was highly specific for sn-2-mono-C18:1 glycerol and acylated rac-1-mono-C18:1 glycerol and 1- and 2-mono-C18:1 glycerol ethers poorly. In contrast, the substrate specificity of intestinal monoacylglycerol acyltransferase activity was broad. 1-Acyl- and 1- and 2-alkylglycerols were acylated at rates that were 45-78% of the rate observed with the preferred substrate sn-2-mono-C18:1 glycerol. Partial heat inactivation did not alter these relative specific activities, making it unlikely that intestinal microsomes contained a second acyltransferase capable of acylating the alternate substrates. The hypothesis that intestine and liver contain non-identical monoacylglycerol acyltransferase activities was further tested. Intestinal mucosa monoacylglycerol acyltransferase was much more thermolabile than the liver activity. Incubation with 50 microM diethylpyrocarbonate inactivated liver monoacylglycerol acyltransferase activity 84% but had little effect on the intestinal activity. Hydroxylamine completely reversed diethylpyrocarbonate inactivation, suggesting that critical histidine residues were more accessible in liver monoacylglycerol acyltransferase. 2,4,6-Trinitrobenzene sulfonic acid inactivated hepatic monoacylglycerol acyltransferase more than the intestinal activity, suggesting that critical lysine residues were more accessible. The intestinal and liver activities were also differently affected by acetone, detergents, MgCl2, phospholipids, and bovine serum albumin. Taken as a whole, the data strongly suggest that rat intestinal mucosa and suckling liver contain tissue-specific monoacylglycerol acyltransferase isoenzymes.  相似文献   

20.
1. Intestinal calcium-binding proteins have been isolated in high purity from mucosal tissue of the cow, pig, horse, guinea pig, and chick. The proteins from all species exhibit rapid, although not identical, electrophoretic mobilities and possesses high affinities for calcium. 2. The intestinal calcium-binding proteins of mammalian origin exhibit a molecular size of approx. 11 000 by calibrated gel filtration and 9000 on the basis of amino acid composition. The analogous chick protein was found to be about 27 000-28 000 molecular weight by these methods. 3. The amino acid composition of each intestinal calcium-binding protein has been determined and indicates a considerable degree of similarity, especially among the mammalian species. 4. Immunoassay procedures have failed to show any species cross-reactivity when tested against antiserum prepared in response to either the bovine or chick intestinal calcium-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号