首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated plasma levels of free fatty acids (FFA) can produce insulin resistance in skeletal muscle tissue and liver and, together with alterations in beta-cell function, this has been referred to as lipotoxicity. This study explores the effects of FFAs on insulin action in rat adipocytes. Cells were incubated 4 or 24 h with or without an unsaturated FFA, oleate or a saturated FFA, palmitate (0.6 and 1.5 mM, respectively). After the culture period, cells were washed and insulin effects on glucose uptake and lipolysis as well as cellular content of insulin signaling proteins (IRS-1, PI3-kinase, PKB and phosphorylated PKB) and the insulin regulated glucose transporter GLUT4 were measured. No significant differences were found in basal or insulin-stimulated glucose uptake in FFA-treated cells compared to control cells, regardless of fatty acid concentration or incubation period. Moreover, there were no significant alterations in the expression of IRS-1, PI3-kinase, PKB and GLUT4 following FFA exposure. Insulin's ability to stimulate PKB phosphorylation was also left intact. Nor did we find any alterations following FFA exposure in basal or cAMP-stimulated lipolysis or in the ability of insulin to inhibit lipolysis. The results indicate that oleate or palmitate does not directly influence insulin action to stimulate glucose uptake and inhibit lipolysis in rat fat cells. Thus, lipotoxicity does not seem to occur in the fat tissue itself.  相似文献   

2.
A simple method to determine thein vitro biological activity of insulin by measuring glucose uptake in the rat adipocytes is presented here. In the presence of insulin, the glucose uptake is 5–6 times more than the basal control. And the uptake of D-[3-3H]-glucose is linear as the logarithm of insulin concentration from 0.2 ώg/L to 1.0 ώg/L. Glucose and 3-O-methyl-glucose inhibit D-[3-3H]-glucose uptake into adipocytes. By this method, thein vitro biological activity of [B2-Lys]-insulin and [B3-Lys]-insulin was measured to be 61.6% and 154% respectively, relative to that of insulin.  相似文献   

3.
A simple method to determine the in vitro biological activity of insulin by measuring glucose uptake in the rat adipocytes is presented here. In the presence of insulin, the glucose uptake is 5-6 times more than the basal control. And the uptake of D-[3-3H]-glucose is linear as the logarithm of insulin concentration from 0.2 μg/L to 1.0 μg/L. Glucose and 3-O-methyl-glucose inhibit D-[3-3H]-glucose uptake into adipocytes. By this method, the in vitro biological activity of [B2-Lys]-insulin and [B3-Lys]-insulin was measured to be 61.6% and 154% respectively, relative to that of insulin.  相似文献   

4.
The dose response effect of a new adenosine analogue, GR 79236 (N-[1S trans-2-hydroxycyclopentyl] adenosine) upon insulin sensitivity was examined in human adipocytes. The influence of adenosine upon insulin sensitivity for suppression of lipolysis and stimulation of glucose transport was examined. Removal of adenosine by use of adenosine deaminase stimulated lipolysis to the same extent as did 10–9 M noradrenaline. GR79236 brought about dose dependent inhibition of lipolysis with half-maximal effect at 11.3±7.8×10–9 M. When lipolysis was stimulated by noradrenaline alone the subsequent inhibition of lipolysis brought about by GR79236 was significantly greater than that of insulin. To examine adenosine effects on the insulin signalling pathway separately from those on lipolysis, the insulin sensitivity of glucose transport was examined. Removal of adenosine brought about a small but significant increase in the concentration of insulin required for half-maximal stimulation of glucose transport. Adenosine agonists offer promise as new agents for the modulation of metabolism in diabetes and other states of insulin resistance.  相似文献   

5.
1. Ovine adipocytes were isolated in the presence of adenosine to minimize cell damage and were incubated at a low cell concentration. 2. Insulin sensitivity of lipid metabolism was retained. 3. Insulin inhibited basal lipolysis by 61% and isoproterenol- and adenosine deaminase-stimulated lipolysis by 84%. 4. Insulin increased glucose conversion to cell lipid by 3-fold.  相似文献   

6.
A modified procedure for preparation of hamster adipocytes by collagenase digestion under carefully controlled conditions has been developed. The adipocytes were 4- to 8-fold more sensitive to catecholamine stimulation of lipolysis than cells prepared by a commonly used method (Hittelman, K.J., Wu, C.F. and Butcher, R.W. (1973) Biochim. Biophys. Acta 304, 188-196) and also more sensitive to the anti-lipolytic action of insulin. The effects of insulin on lipogenesis, measured as [3H]glucose conversion to cell lipids, and on catecholamine-stimulated lipolysis were compared under identical conditions with the same cell batch. Isoprenaline-stimulated lipolysis was found to be half-maximally inhibited by an insulin concentration 8-fold lower than that stimulating lipogenesis to a corresponding extent (half-maximal effects at insulin concentrations of 40 vs. 300 pM). A similar difference was found when cells had been stimulated with adrenaline instead of isoprenaline.  相似文献   

7.
John M. Amatruda 《Life sciences》1980,26(26):2289-2292
The time course and concentration dependence of 2-deoxy-D-glucose uptake were evaluated in isolated rat adipocytes. There is an initial rapid velocity of deoxyglucose uptake which decreases to a lower steady state rate of accumulation. In addition, an intermediary plateau in the concentration range of 0.1 to 0.4 mM deoxyglucose is evident. These data demonstrate that deoxyglucose uptake displays the hysteretic properties of many complex regulatory metabolic processes. This hysteresis may serve to buffer oscillations in blood glucose concentration. The declining rate of uptake with time may also explain why the assessment of deoxyglucose uptake at 30 s overestimates the rate of glucose utilization over more prolonged periods.  相似文献   

8.
The effects of different vanadium compounds namely pyridine-2,6-dicarboxylatedioxovanadium(V) (V5-dipic), bis(maltolato) oxovanadium(IV) (BMOV) and amavadine, and oligovanadates namely metavanadate and decavanadate were analysed on basal and insulin stimulated glucose uptake in rat adipocytes. Decavanadate (50 μM), manifest a higher increases (6-fold) on glucose uptake compared with basal, followed by BMOV (1 mM) and metavanadate (1 mM) solutions (3-fold) whereas V5 dipic and amavadine had no effect. Decavanadate (100 μM) also shows the highest insulin like activity when compared with the others compounds studied. In the presence of insulin (10 nM), only decavanadate increases (50%) the glucose uptake when compared with insulin stimulated glucose uptake whereas BMOV and metavanadate, had no effect and V5 dipic and amavadine prevent the stimulation to about half of the basal value. Decavanadate is also able to reduce or eradicate the suppressor effect caused by dexamethasone on glucose uptake at the level of the adipocytes. Altogether, vanadium compounds and oligovanadates with several structures and coordination spheres reveal different effects on glucose uptake in rat primary adipocytes.  相似文献   

9.
1. Brown adipocytes were isolated from the interscapular depot of male rats maintained at approx. 21 degrees C. In some experiments parallel studies were made with white adipocytes from the epididymal depot. 2. Insulin increased and noradrenaline decreased [U-14C]glucose incorporation into fatty acids by brown adipocytes. Brown adipocytes differed from white adipocytes in that exogenous fatty acid (palmitate) substantially decreased fatty acid synthesis from glucose. Both noradrenaline and insulin increased lactate + pyruvate formation by brown adipocytes. Brown adipocytes converted a greater proportion of metabolized glucose into lactate + pyruvate and a smaller proportion into fatty acids than did white adipocytes. 3. In brown adipocytes, when fatty acid synthesis from [U-14C]glucose was decreased by noradrenaline or palmitate, incorporation of 3H2O into fatty acids was also decreased to an extent which would not support proposals for extensive recycling into fatty acid synthesis of acetyl-CoA derived from fatty acid oxidation. 4. In the absence of glucose, [U-14C]lactate was a poor substrate for lipogenesis in brown adipocytes, but its use was facilitated by glucose. When brown adipocytes were incubated with 1 mM-lactate + 5 mM-glucose, lactate-derived carbon generally provided at least 50% of the precursor for fatty acid synthesis. 5. Both insulin and noradrenaline increased [U-14C]glucose conversion into CO2 by brown adipocytes (incubated in the presence of lactate) and, in combination, stimulation of glucose oxidation by these two agents showed synergism. Rates of 14CO2 formation from glucose by brown adipocytes were relatively small compared with maximum rates of oxygen consumption by these cells, suggesting that glucose is unlikely to be a major substrate for thermogenesis. 6. Brown adipocytes from 6-week-old rats had considerably lower maximum rates of fatty acid synthesis, relative to cell DNA content, than white adipocytes. By contrast, rates of fatty acid synthesis from 3H2O in vivo were similar in the interscapular and epididymal fat depots. Expressed relative to activities of fatty acid synthase or ATP citrate lyase, however, brown adipocytes synthesized fatty acids as effectively as did white adipocytes. It is suggested that the cells most active in fatty acid synthesis in the brown adipose tissue are not recovered fully in the adipocyte fraction during cell isolation. Differences in rates of fatty acid synthesis between brown and white adipocytes were less apparent at 10 weeks of age.  相似文献   

10.
The effects of pre-incubation with isoprenaline and noradrenaline on insulin binding and insulin stimulation of D-glucose transport in isolated rat adipocytes are reported. (1) Pre-incubation of the cells with isoprenaline (0.1-10 microM) in Krebs-Ringer-Hepes [4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid] buffer (30 min, 37 degrees C) at D-glucose concentrations of 16 mM, in which normal ATP levels were maintained, caused a rightward-shift in sensitivity of D-glucose transport to insulin stimulation by 50% and a decrease in maximal responsiveness by 30% (2) [A14-125I]insulin binding was reduced significantly by 35% at insulin concentrations less than 100 mu-units/ml and Scatchard analysis showed that this consisted mainly of a decrease in high-affinity binding. (3) Pre-incubation with catecholamines under the same conditions but at low glucose concentrations (0-5 mM) caused a fall in intracellular ATP levels of 65 and 45% respectively. (4) The fall in ATP additionally lowered insulin binding by 50% at all insulin concentrations and a parallel shift of the binding curves in the Scatchard plot showed that this was due to a decrease in the number of receptors. (5) At low and high ATP concentrations the insulin stimulation of D-glucose transport was inhibited to a similar extent. (6) Pre-incubation with catecholamines thus inhibited insulin stimulation of D-glucose transport in rat adipocytes mainly by a decrease in high-affinity binding of insulin, which was not mediated by low ATP levels. This mechanism may play a role in the pathogenesis of catecholamine-induced insulin resistance in vivo.  相似文献   

11.
12.
Birds have much higher plasma glucose and fatty acid levels compared to mammals. In addition, they are resistant to insulin-induced decreases in blood glucose. Recent studies have demonstrated that decreasing fatty acid utilization alleviates insulin resistance in mammals, thereby decreasing plasma glucose levels. This has yet to be examined in birds. In the present study, the levels of glucose and beta-hydroxybutyrate (BOHB), a major ketone body and indicator of fatty acid utilization, were measured after the administration of chicken insulin, acipimox (an anti-lipolytic agent), or insulin and acipimox in mourning doves (Zenaidura macroura). Insulin significantly decreased whole blood glucose levels (19%), but had no effect on BOHB concentrations. In contrast, acipimox decreased blood BOHB levels by 41%, but had no effect on whole blood glucose. In addition to changes in blood composition, levels of glucose uptake by various tissues were measured after the individual and combined administration of insulin and acipimox. Under basal conditions, the uptake of glucose appeared to be greatest in the kidney followed by the brain and skeletal muscle with negligible uptake by heart, liver and adipose tissues. Acipimox significantly decreased glucose uptake by brain (58% in cortex and 55% in cerebellum). No significant effect of acipimox was observed in other tissues. In summary, the acute inhibition of lipolysis had no effect on glucose uptake in the presence or absence of insulin. This suggests that free fatty acids alone may not be contributing to insulin resistance in birds.  相似文献   

13.
14.
15.
The relationship between cAMP-dependent protein kinase (A-kinase) activity ratios and lipolysis in the presence of insulin was compared to the standard relationship between these two parameters established with a variety of adenylate cyclase modulators (Honnor, R. C., Dhillon, G., and Londos, C. (1985) J. Biol. Chem. 260, 15130-15138). Three phases of insulin action were observed. First, when tested in control cells exhibiting A-kinase activity ratios up to approximately 0.25, insulin inhibition of lipolysis could be accounted for by the decrease in A-kinase activity. Second, in cells exhibiting A-kinase activity ratios greater than 0.3, the decrease in kinase activity by insulin did not account for the decrease in lipolysis. Finally, as the A-kinase activity ratio approached 0.6 the insulin effect on lipolysis was lost. The data suggest that protein phosphatase activation accounts for the cAMP-independent insulin action. Moreover, the insulin effect not accounted for by a decrease in A-kinase activity appears to be elicited only upon elevation of A-kinase activity. The method by which cells were stimulated determined the IC50 for insulin inhibition of: 1) A-kinase activity ratios, 2) lipolysis explained by the decrease in A-kinase activity ratios, and 3) lipolysis not explained by a decrease in A-kinase activity ratios. For all three parameters, cells stimulated by lipolytic hormones were approximately 5 times more sensitive to insulin than cells stimulated by incubation in a ligand-free environment achieved with adenosine deaminase; insulin IC50 values were approximately 120 and 600 pM, respectively. Such data establish a link between insulin actions in modifying cAMP concentrations and in modifying events apparently independent of changes in cAMP. It is proposed that the receptors and regulatory components associated with adipocyte adenylate cyclase are associated also with components of the insulin response system separate from cyclase.  相似文献   

16.
17.
The aim of the present study was to gain insight into the signaling pathway used by leptin to stimulate lipolysis. The lipolytic rate of white adipocytes from sex- and age-matched lean (+/+) and fa/fa rats was determined in the absence or presence of leptin together with a number of agents acting at different levels of the signaling cascade. Leptin did not modify FSK-, dbcAMP-, and IBMX-stimulated lipolysis. Lipolysis can also be maximally stimulated by lowering media adenosine levels with adenosine deaminase (ADA), i.e., in the ligand-free state. Although ADA produced near maximal lipolysis in adipocytes of lean animals, only half of the maximal lipolytic rate (50.9+/-3.2%) was achieved in fat cells from fa/fa rats (P=0.0034). In adipocytes from lean animals preincubated with ADA, leptin caused a concentration-related stimulation of lipolysis (P=0.0001). However, leptin had no effect on the lipolytic activity of adipocytes in the ligand-free state from fa/fa rats. The adenosine A1 receptor agonist CPA effectively inhibited basal lipolysis in both lean and obese adipocytes (P=0.0001 and P=0.0090, respectively). Leptin had no effect on the lipolytic rate of adipocytes isolated from fa/fa rats and preincubated with CPA. When adipocytes were incubated with the A1 receptor antagonist DPCPX, a significant increase in glycerol release was observed in fa/fa fat cells (P=0.009), whereas cells isolated from lean rats showed no differences to ADA-stimulated lipolysis. After pretreatment with PTX, which inactivates receptor-mediated Gi function, adipocytes of obese rats became as responsive to the stimulatory actions of ISO as cells from lean rats (P=0.0090 vs. ISO in fa/fa rats; P=0.2416 vs. lean rats, respectively). PTX treatment of lean cells, however, did not alter their response to this lipolytic agent. It can be concluded that the lipolytic effect of leptin is located at the adenylate cyclase/Gi proteins level and that leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes.  相似文献   

18.
19.
Insulin regulates the activity of both protein kinases and phosphatases. Little is known concerning the subcellular effects of insulin on phosphatase activity and how it is affected by insulin resistance. The purpose of this study was to determine insulin-stimulated subcellular changes in phosphatase activity and how they are affected by insulin resistance. We used an in vitro fatty acid (palmitate) induced insulin resistance model, differential centrifugation to fractionate rat adipocytes, and a malachite green phosphatase assay using peptide substrates to measure enzyme activity. Overall, insulin alone had no effect on adipocyte tyrosine phosphatase activity; however, subcellularly, insulin increased plasma membrane adipocyte tyrosine phosphatase activity 78 +/- 26% (n = 4, P < 0.007), and decreased high-density microsome adipocyte tyrosine phosphatase activity 42 +/- 13% (n = 4, P < 0.005). Although insulin resistance induced specific changes in basal tyrosine phosphatase activity, insulin-stimulated changes were not significantly altered by insulin resistance. Insulin-stimulated overall serine/threonine phosphatase activity by 16 +/- 5% (n = 4, P < 0.005), which was blocked in insulin resistance. Subcellularly, insulin increased plasma membrane and crude nuclear fraction serine/threonine phosphatase activities by 59 +/- 19% (n = 4, P < 0. 005) and 21 +/- 7% (n = 4, P < 0.007), respectively. This increase in plasma membrane fractions was inhibited 23 +/- 7% (n = 4, P < 0. 05) by palmitate. Furthermore, insulin increased cytosolic protein phosphatase-1 (PP-1) activity 160 +/- 50% (n = 3, P < 0.015), and palmitate did not significantly reduce this activity. However, palmitate did reduce insulin-treated low-density microsome protein phosphatase-1 activity by 28 +/- 6% (n = 3, P < 0.04). Insulin completely inhibited protein phosphatase-2A activity in the cytosol and increased crude nuclear fraction protein phosphatase-2A activity 70 +/- 29% (n = 3, P < 0.038). Thus, the major effects of insulin on phosphatase activity in adipocytes are to increase plasma membrane tyrosine and serine/threonine phosphatase, crude nuclear fraction protein phosphatase-2A, and cytosolic protein phosphatase-1 activities, while inhibiting cytosolic protein phosphatase-2A. Insulin resistance was characterized by reduced insulin-stimulated serine/threonine phosphatase activity in the plasma membrane and low-density microsomes. Specific changes in phosphatase activity may be related to the development of insulin resistance.  相似文献   

20.
The notion of an insulin-dependent translocation of the glucose transporter in rat adipocytes was confirmed by immunoblotting and reconstitution of glucose transport activity of subcellular fractions. Quantitatively, however, significantly different results were obtained with these two techniques; when compared with reconstitution, immunoblotting detected translocation of a larger amount of the transporter from a low density microsome fraction to a plasma membrane fraction. The acidtropic agents chloroquine and dibucaine, which have been reported to inhibit the recycling of various receptors, were utilized to study the detailed translocation mechanism of the glucose transporter and the insulin receptor. These acidtropic agents caused accumulation of 125I-insulin in a subcellular fraction probably corresponding to lysosomes. They did not, however, significantly affect either the insulin-induced activation of glucose transport or the recycling of the transporter and the insulin receptor as detected by immunoblotting. About 50% of radioactivity released from adipocytes which were allowed to internalize insulin was due to intact insulin, and chloroquine did not change the release rate of intact insulin, raising the possibility of receptor-mediated exocytosis of insulin. The release of degraded insulin decreased with chloroquine treatment. The results are consistent with the idea that these acidtropic agents mainly act to inhibit degradation of insulin in lysosomes, and their effect on the recycling of the glucose transporter and the insulin receptor is minimal, indicating that the recycling of these membrane proteins proceeds irrespective of organelle acidification. Electron micrographs showed vesicles underneath the plasma membranes, with sizes similar to those of the low density microsome fraction where the internalized glucose transporter and the insulin receptor were located.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号