首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequences of the small-subunit (SSU) ribosomal DNA were determined forPelvetia babingtonii, P. canaliculate, Pelvetiopsis limitata, andAscophyllum nodosum in the family Fucaceae. A total of 1755 positions were aligned for the whole sequence. The positional differences in the primary structure among the taxa ranged from 16 to 30 nucleotide changes in pairwise comparisons. There was a minimum divergence betweenPs. limitata andP. babingtonii while a maximum betweenPs. limitata andP. canaliculata. The SSU rDNA trees showed that the genusPelvetia was not monophyletic and the genusPelvetiopsis was not closely related toPelvetia. Our results suggest that the taxonomic revision of the genusPelvetia as well as the family Fucaceae is needed based on detailed morphological observations.  相似文献   

2.
Based on parsimony analyses of eight new SSU rDNA sequences and 24 homologous sequences retrieved from the DNA databases, we suggest a possible phylogenetic relationship of Elaphomycetales with Eurotiales and Onygenales. Our three includedElaphomyces sequences strongly cluster together (bootstrap value 100%) within a monophyletic group (100%) of Elaphomycetales, Eurotiales, and Onygenales. Earlier reports that another cleistothecial lineage (Erysiphe) is related to Leotiales, are supported by our discovery that also another cleistothecial species,Amylocarpus encephaloides, shows affinity to Leotiales. Ascosphaeraceae and Eremascaceae are possibly better accommodated in Onygenales. We describe a new DNA extraction method in which sonication is used to disrupt thick-walled spores. It is useful for both fresh and dried fungal material.  相似文献   

3.
4.
Burki F  Berney C  Pawlowski J 《Protist》2002,153(3):251-260
Gromia oviformis Dujardin is a common marine protist characterised by a large, globular test and filose pseudopodia. First considered a foraminifer, Gromia was later placed within the Filosea and recently included among amoebae of uncertain affinities. In order to clarify the phylogenetic position of this genus, we sequenced the complete small-subunit ribosomal DNA gene of G. oviformis collected at five different geographic localities. The high divergence of obtained sequences suggests that G. oviformis is a species complex composed of several genetically distinct sibling species. Sequence analyses show Gromia to be a member of the Cercozoa, a heterogeneous assemblage which includes filose amoebae, the amoeboflagellate cercomonads, the chlorarachniophytes and the plasmodiophorid plant pathogens. Contrary to traditional classification, Gromia is not closely related to other testate filose amoebae (the Euglyphida), but seems to branch early among the Cercozoa. Our analyses also show a close relationship between the Cercozoa and the Acantharea. Because the Cercozoa are related to the Foraminifera based on other molecular data, we propose that most protists possessing filopodia, reticulopodia and axopodia have a common origin.  相似文献   

5.
ABSTRACT. In order to re‐evaluate the systematics of sessilid peritrich ciliates, small subunit (SSU) rRNA gene sequences were determined for 12 species belonging to five genera: Vorticella, Pseudovorticella, Epicarchesium, Zoothamnium, and Zoothamnopsis. Phylogenetic trees were deduced using Bayesian inference, maximum parsimony, and maximum likelihood methods. The phylogenetic analyses suggest that (1) sessilids which have stalks with continuous myonemes that contract in a zig‐zag fashion form a separate clade from those which have stalks that contract independently and in a spiral fashion, supporting the separation of the family Zoothamniidae from the family Vorticellidae and (2) Epicarchesium and Pseudovorticella, both of which have reticulate silverline systems, are more closely related to each other than to other vorticellids, suggesting that differences in the silverline system (i.e. transverse vs. reticulate) may be the result of genuine evolutionary divergence among sessilid peritrichs. However, the newly sequenced Zoothamnopsis sinica, which has a reticulate silverline pattern, nests within the unresolved Zoothamnium species that have transverse silverline patterns. Thus, there were at least two evolutions of the reticulate silverline pattern character state from a plesiomorphic transverse state in the peritrichid ciliates. The molecular work demonstrates the genus Zoothamnium to be paraphyletic in relation to morphological studies, and suggests that Astylozoon, Opisthonecta, and Vorticella microstoma possibly share a SSU rRNA secondary structure in the helix E10‐1 region.  相似文献   

6.
    
Abstract: The Lichinales are a group of lichenized ascomycetes that almost exclusively possess cyanobacteria as their primary photobiont and are hitherto separated from the Lecanorales, the major group of lichenized ascomycetes, by thallus structure, ascoma ontogeny, ascus structure and ascus function. The relationship of the two families Peltulaceae and Lichinaceae, both placed within the Lichinales, with the Heppiaceae, placed within the Lecanorales, was investigated, as well as a possible sister group relationship of the Lichinales to the Lecanorales. Phylogenetic analyses included non-molecular data as well as 18S rDNA sequence data. The monophyly of the Lichinales including the family Heppiaceae and a sister group relationship of Lichinales and Lecanorales, based on the shared presence of lecanoralean asci, are proposed in a morphological hypothesis. Parsimony and distance analyses of 18S rDNA sequence data strongly support the monophyly of the Lichinales, including all three families. Therefore, the presence of rostrate, lecanoralean asci in Peltula and part of the Lichinaceae suggests that this ascus type is an autapomorphy of the monophyletic Lichinales. Furthermore, the occurrence of prototunicate asci in the Heppiaceae and most of the Lichinaceae is autapomorphic and was gained independently by reduction of the rostrate ascus. The 18S rDNA analysis did not reject the non-molecular hypothesis of a sister group relationship of the Lichinales and the Lecanorales as based on ascus characters. The alternative placement of the Lichinales as the sister group of all inoperculate euascomycetes excluding the Sordariomycetes and most of the Leotiales in the gene tree received unsufficient bootstrap support and no support from any non-molecular data and consequently was rejected.  相似文献   

7.
The PCR-amplified 185 rRNA gene and ITS2 region were used for a restriction-site analysis to infer phylogenetic relationships among European representatives of the leech family Erpobdellidae and to test the phylogenetic reliability of the morphological characters used in this family till now. Fragment patterns produced by 11 restriction endonucleases in the 18S rRNA gene and by nine in the ITS2 region showed a higher interspecific variation in the latter than in the former genome component. No intraspecific variation could be detected, even among geographically very distant populations, except for the two supposed subspecies Trocheta b. bykowskii and T. b. krasense . The estimated overall nucleotide divergence (d) was lower in the genus Erpobdella (d = 0.015–0.061) than in the genera Dina and Trocheta (d = 0.049–0.090). E. testacea and E. monostriata do not seem to be as closely related to each other as previously thought; their pairwise nucleotide divergence (0.061) is highest within the genus Erpobdella . The nucleotide divergence between T. b. bykowskii and T. b. krasense (0.090), which greatly resemble each other morphologically, was surprisingly high. Phylogenetic trees were inferred via neighbour-joining and maximum parsimony methods. The trees support the monophyly of Erpobdellidae and the subdivision into two groups according to the pattern of annulation (the Erpobdella clade and the Dina-Trocheta clade). Further subdivision based on annulation patterns and other morphological characters is not supported. There was no molecular evidence for the monophyly of the genus Dina and the monophyly of the genus Trocheta .  相似文献   

8.
9.
  总被引:1,自引:0,他引:1  
Reticulomyxa filosa is a freshwater protist possessing fine granular, branching and anastomosing pseudopodia and therefore traditionally placed in the class Granuloreticulosea, order Athalamida, as a sister group to the order Foraminiferida. Recent studies have revealed remarkable similarities in pseudopodial motility and ultrastructure between R. filosa and foraminifera (e.g. Allogromia laticollaris), prompting us to conduct a molecular phylogenetic analysis of these seemingly disparate organisms. We sequenced the complete small-subunit of the ribosomal DNA of the cultured strain of R. filosa and compared it to the corresponding sequences of other protists including 12 species of foraminifera. We also sequenced and analyzed the actin coding genes from R. filosa and two species of foraminifera, Allogromia sp. and Ammonia sp. The analysis of both data sets clearly shows that R. filosa branches within the clade of foraminifera, suggesting that R. filosa is in fact a freshwater naked foraminiferan.  相似文献   

10.
Abstract Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino–Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised.  相似文献   

11.
Comparative electron microscopic studies of Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) showed that they share a distinctive flagellar transitional zone and a very similar flagellar apparatus. In both species, the basic couple of basal bodies and flagella #1 and #2 are connected to the dorsal and ventral roots, respectively. Collodictyon triciliatum has two additional basal bodies and flagella, #3 and #4, situated on each side of the basic couple, each of which also bears a dorsal root. The horseshoe-shaped arrangement of dictyosomes, mitochondria with tubular cristae and the deep ventral groove are very similar to those of Diphylleia rotans. These two genera have very specific features and are placed in a new family, Collodictyonidae, distinct from other eukaryotic groups. Electron microscopic observation of mitotic telophase in Diphylleia rotans revealed two chromosomal masses, surrounded by the nuclear envelope, within the dividing parental nucleus, as in the telophase stage of the heliozoan Actinophrys and the helioflagellate Dimorpha. Spindle microtubules arise from several MTOCs outside the nucleus, and several microtubules penetrate within the dividing nucleus, via pores at the poles. This semi-open type of orthomitosis is reminiscent of that of actinophryids. The SSU rDNA sequence of Diphylleia rotans was compared with that of all the eukaryotic groups that have a slow-evolving rDNA. Diphylleia did not strongly assemble with any group and emerged in a very poorly resolved part of the eukaryotic phylogenetic tree.  相似文献   

12.
Microdiaphanosoma arcuatum Wenzel, 1953 is a world-wide distributed ciliate, recorded mainly in soil samples, which we have also identified in ground water samples from South Africa. This ciliate has been frequently overlooked or not determined due to its small size, ~12 μm. The genus Microdiaphanosoma is nowadays included in the class Colpodea, order Bryometopida, family Kreyellidae. The first complete small subunit (SSU) rDNA gene sequence of this ciliate was obtained from a South African isolate. Phylogenetic analysis including available SSU rDNA sequences from another Colpodea species in the GenBank strongly supported the position of M. arcuatum within the order Cyrtolophosidida instead of the order Bryometopida. The analysis also suggested a sister relationship between this species and species from the family Cyrtolophosididae.  相似文献   

13.
Comparative electron microscopic studies of Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) showed that they share a distinctive flagellar transitional zone and a very similar flagellarapparatus. In both species, the basic couple of basal bodies and flagella #1 and #2 are connected to the dorsal and ventral roots, respectively. Collodictyon triciliatum has two additional basal bodies and flagella, #3 and #4, situated on each side of the basic couple, each of which also bears a dorsal root. The horseshoe-shaped arrangement of dictyosomes, mitochondria with tubular cristae and the deep ventral groove are very similar to those of Diphylleia rotans. These two genera have very specific features and are placed in a new family, Collodictyonidae, distinct from other eukaryotic groups. Electron microscopic observation of mitotic telophase in Diphylleia rotans revealed two chromosomal masses, surrounded by the nuclear envelope, within the dividing parental nucleus, as in the telophase stage of the heliozoan Actinophrys and the helioflagellate Dimorpha. Spindle microtubules arise from several MTOCs outside the nucleus, and several microtubules penetrate within the dividing nucleus, via pores at the poles. This semi-open type of orthomitosis is reminiscent of that of actinophryids. The SSU rDNA sequence of Diphylleia rotans was compared with that of all the eukaryotic groups that have a slow-evolving rDNA. Diphylleia did not strongly assemble with any group and emerged in a very poorly resolved part of the eukaryotic phylogenetic tree.  相似文献   

14.
The ciliate genus Chlamydodon is characterized by a unique cross-striated band (CSB) along the cell perimeter. To date, more than 15 nominal species have been assigned to this genus, all of which are exclusively from marine or brackish water. In the present work, we have revised the genus according to the available data and suggest an illustrated key to aid species diagnosis. In addition, the systematic relationships of chlamydodontid congeners were analysed based on SSU rRNA gene sequences, indicating that all congeners belong to a well-defined clade. Furthermore, we investigated three species from coastal areas of China, including two new species, Chlamydodon wilberti sp. nov. and C. bourlandi sp. nov., using morphological and phylogenetic criteria. Chlamydodon wilberti sp. nov. is characterized by a cell size of 65–105 × 35–60 µm, a complete CSB, and 38–49 somatic kineties. Chlamydodon bourlandi sp. nov. has a cell size of 150–250 × 65–150 µm, a complete CSB, a reddish to violet cell colour, 83–97 somatic kineties, and 40–68 contractile vacuoles. As a further contribution, a well-studied species, C. triquetrus (Müller, 1786) Kahl, 1931, is also re-described.

www.zoobank.org/urn:lsid:zoobank.org:pub:B83A5466-9D2B-4502-9A23-F16A61D48172.  相似文献   


15.
Kühn S  Medlin L  Eller G 《Protist》2004,155(2):143-156
Sequences of the nuclear encoded small subunit (SSU) rRNA were determined for Pirsonia diadema, P. guinardiae, P. punctigerae, P. verrucosa, P. mucosa and three newly isolated strains 99-1, 99-2, 99-S. Based on phylogenetic analysis all Pirsonia strains, except P. mucosa, clustered together in one clade, most closely related to Hyphochytrium catenoides within the group of stramenopiles. However, P. mucosa was most closely related to Cercomonas sp. SIC 7235 and Heteromita globosa and belongs to the heterogenic group of Cercozoa. In addition to the SSU rDNA sequences, P. mucosa differs from the stramenopile Pirsonia species in some characteristics and was therefore redescribed in this paper as Pseudopirsonia mucosa. The three newly isolated strains 99-1, 99-2, and 99-S differed by 28 bp in their SSU rDNA sequences from their closest neighbour P. diadema and only 1 to 3 bp among themselves. These base differences and a host range similar to P. formosa were sufficient to assign them as new strains of P. formosa.  相似文献   

16.
隙蛛亚科Coelotinae主要分布于东亚地区,其中我国的已有种类占到全世界种数的一半以上,因此对于我国隙蛛类蜘蛛的研究已经成为世界暗蛛科研究的重点之一。隙蛛亚科属于无筛器类群,于1893年,由Cambridge以隙蛛属为模式属而建立,归属于无筛器的漏斗蛛科。之后,虽然经历了数次修订  相似文献   

17.
18.
To examine phylogenetic relationships among the "cladoniiform" lichenized fungi, i.e., the families Cladoniaceae, Baeomycetaceae, Icmadophilaceae, Stereocaulaceae, and Siphulaceae, and to provide evidence for the anticipated independent origins of podetia and pseudopodetia, we conducted phylogenetic analyses of SSU (small subunit) rDNA sequences from 39 lichen-forming fungi. These fungi represent all of the major growth forms of lichen associations, fruticose (including "cladoniiform"), foliose, and crustose. Our analysis suggests that lichen-forming fungi with a "cladoniiform" morphology arose multiple times within the ascomycetes. Additionally, each of the other thallus growth forms, crustose, foliose, and fruticose, have originated multiple times. It also seems to be clear that neither all podetiate nor all pseudopodetiate taxa form a monophyletic group. Therefore the term "podetium" should be restricted to homologous structures that are most probably limited to the genera Cladonia, Cladina, Pycnothelia, and allies. The "pseudopodetia" of Stereocaulon (Stereocaulaceae) and Cladia (Cladiaceae) may represent different states of the same homologous character. Our phylogenetic hypothesis supports the monophyletic origin of the order Lecanorales sensu stricto, including representatives of five suborders Cladoniineae, Lecanorineae, Teloschistineae, Agyriineae and Peltigerineae, but excluding representatives of the suborders Acarosporineae (Acarospora schleicheri and Megaspora verrucosa), Pertusariineae (Pertusaria trachythallina), and Umbilicarineae. The suborder Cladoniineae and the family Cladoniaceae both appear to be polyphyletic assemblages.  相似文献   

19.
    
A phylogenetic study of marine ascomycetes was initiated to test and refine evolutionary hypotheses of marine-terrestrial transitions among ascomycetes. Taxon sampling focused on the Halosphaeriales, the largest order of marine ascomycetes. Approximately 1050 base pairs (bp) of the gene that codes for the nuclear small subunit (SSU) and 600 bp of the gene that codes for the nuclear large subunit (LSU) ribosomal RNAs (rDNA) were sequenced for 15 halosphaerialean taxa and integrated into a data set of homologous sequences from terrestrial ascomycetes. An initial set of phylogenetic analyses of the SSU rDNA from 38 taxa representing 15 major orders of the phylum Ascomycota confirmed a close phylogenetic relationship of the halosphaerialean species with several other orders of perithecial ascomycetes. A second set of analyses, which involved more intensive taxon sampling of perithecial ascomycetes, was performed using the SSU and LSU rDNA data in combined analyses. These second analyses included 15 halosphaerialean taxa, 26 terrestrial perithecial fungi from eight orders, and five outgroup taxa from the Pezizales. In these analyses the Halosphaeriales were polyphyletic and comprised two distinct lineages. One clade of Halosphaeriales comprised 12 taxa from 11 genera and was most closely related to terrestrial fungi of the Microascales. The second clade of halosphaerialean fungi comprised taxa from the genera Lulworthia and Lindra and was an isolated lineage among the perithecial fungi. Both the main clade of Halosphaeriales and the Lulworthia/Lindra clade are supported by the data as being independently derived from terrestrial ancestors.  相似文献   

20.
Abstract  Several species of Aphelinus have been introduced to the US from the Old World for biological control of the Russian wheat aphid, Diuraphis noxia (Modvilko). Reproductive incompatibility has been observed among populations collected from different geographic areas. We examined whether or not the reproductive incompatibility between strains of A. asychis was caused by distant phylogenetic relationships. Ribosomal DNA sequences of internal transcribed spacers 2 (ITS2) were analyzed in several species of Aphelinus collected from multiple sites of Europe and Asia. The phylogenetic analysis showed that strains within the species A. albipodus and A. asychis are not monophyletic, and two clearly divergent clades were revealed among sequenced samples. Our results suggest that the reproductive incompatibility between three exotic strains of A. asychis was more likely caused by divergence of phylogeny than by symbiotic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号