首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the endogenous quinone pool and reduction of added quinones revealed that external NADH reduced them to the same, or greater, extent than did succinate. A kinetic analysis of the relationship between alternative oxidase activity and the redox state of ubiquinone indicated that the degree of ubiquinone reduction during external NADH oxidation was sufficient to fully engage the alternative oxidase. Measurements of NADH oxidation in the presence of succinate showed that the two substrates competed for cytochrome chain activity but not for alternative oxidase activity. Both reduced Q-1 and duroquinone were readily oxidized by the cytochrome oxidase pathway but only slowly by the alternative oxidase pathway in soybean mitochondria. In mitochondria isolated from the thermogenic spadix of Philodendron selloum, on the other hand, quinol oxidation via the alternative oxidase was relatively rapid; in these mitochondria, external NADH was also oxidized readily by the alternative oxidase. Antibodies raised against alternative oxidase proteins from Sauromatum guttatum cross-reacted with proteins of similar molecular size from soybean mitochondria, indicating similarities between the two alternative oxidases. However, it appears that the organization of the respiratory chain in soybean is different, and we suggest that some segregation of electron transport chain components may exist in mitochondria from nonthermogenic plant tissues.  相似文献   

2.
We have previously isolated mutants of Escherichia coli which show increased oxidation of heterocyclic furan and thiophene substrates. We have now found that strains carrying the thdA mutation express a novel enzyme activity which oxidizes a variety of substrates containing a sulfone (SO2) moiety. Both heterocyclic sulfones (e.g., tetramethylene sulfone) and simple aliphatic sulfones (e.g., ethyl sulfone) were oxidized. The thdA mutants were more resistant than wild-type strains to aromatic sulfone antibiotics such as dapsone. In contrast they showed increased susceptibility to thiolutin, a cyclic antibiotic containing sulfur at the sulfide level of oxidation. Several new thdA mutant alleles were isolated by selecting for increased oxidation of various aliphatic sulfur compounds. These new thdA mutants showed similar sulfone oxidase activity and the same map location (at 10.7 min) as the original thdA1 mutation. The constitutive fadR mutation was required for the phenotypic expression of thdA-mediated oxidation of sulfur compounds. However, the thdA-directed expression of sulfone oxidase activity was not fadR dependent. The thdC and thdD mutations probably protect against the toxicity of thiophene derivatives rather than conferring improved metabolic capability.  相似文献   

3.
We have previously isolated mutants of Escherichia coli which show increased oxidation of heterocyclic furan and thiophene substrates. We have now found that strains carrying the thdA mutation express a novel enzyme activity which oxidizes a variety of substrates containing a sulfone (SO2) moiety. Both heterocyclic sulfones (e.g., tetramethylene sulfone) and simple aliphatic sulfones (e.g., ethyl sulfone) were oxidized. The thdA mutants were more resistant than wild-type strains to aromatic sulfone antibiotics such as dapsone. In contrast they showed increased susceptibility to thiolutin, a cyclic antibiotic containing sulfur at the sulfide level of oxidation. Several new thdA mutant alleles were isolated by selecting for increased oxidation of various aliphatic sulfur compounds. These new thdA mutants showed similar sulfone oxidase activity and the same map location (at 10.7 min) as the original thdA1 mutation. The constitutive fadR mutation was required for the phenotypic expression of thdA-mediated oxidation of sulfur compounds. However, the thdA-directed expression of sulfone oxidase activity was not fadR dependent. The thdC and thdD mutations probably protect against the toxicity of thiophene derivatives rather than conferring improved metabolic capability.  相似文献   

4.
Oxidation of N-alkyl and C-alkylputrescines by diamine oxidases   总被引:1,自引:0,他引:1  
N-Methyl-, N-ethyl-, N-propyl- and N-butylputrescine were assayed as substrates of diamine oxidase from pea seedling and pig kidney. With the exception of N-methylputrescine they were found to be oxidized to the corresponding aminoaldehydes. 1-Methyl-, 2-methyl-, 1-ethyl- and 1-propylputrescine were oxidized by the oxidases at lower rates than the N-alkylderivatives. 1,3-Dimethylputrescine had negligible oxidation rates while 1,4-dimethylputrescine (2,5-diaminohexane) was not a substrate. The oxidation of putrescine by the kidney oxidase was inhibited by 1,4-dimethylputrescine, while the pea oxidase was strongly inhibited by the former as well as by 2-methylputrescine and 1,3-dimethylputrescine. Serum amine oxidase did not oxidize the substituted putrescines although several of the latter inhibited spermidine oxidation by this oxidase.  相似文献   

5.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its primary oxidation product, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), are mechanism-based inhibitors of monoamine oxidases A and B. The pseudo-first-order rate constants for inactivation were determined for various analogues of MPTP and MPDP+ and the concentrations in all redox states were measured throughout the reaction. Disproportionation was observed for all the dihydropyridiniums, but non-enzymic oxidation was insignificant. The dihydropyridiniums were poor substrates for monoamine oxidase A and, consequently, inactivated the enzyme only slowly, despite partition coefficients lower than those for the tetrahydropyridines. For monoamine oxidase B, the dihydropyridiniums were more effective inactivators than the tetrahydropyridines. Substitutions in the aromatic ring had no major effect on the inactivation of monoamine oxidase B, but the 2'-ethyl- and 3'-chloro-substituted compounds were very poor mechanism-based inactivators of monoamine oxidase A. It is clear that both oxidation steps can generate the reactive species responsible for inactivation.  相似文献   

6.
The respiratory components of the envelope membrane preparation of Neisseria meningitidis were investigated. Oxidase activities were demonstrated in this fraction in the presence of succinic acid, reduced nicotinamide adenine dinucleotide, and ascorbate-N,N,N',N'-tetramethyl-p-phenylene-diamine (TMPD). Differences in the kinetics of inhibition by terminal oxidase inhibitors on the three oxidase activities indicated that ascorbate-TMPD oxidation involved only an azide-sensitive oxidase, whereas oxidation of the physiological substrates involved two oxidases, one of which was relatively azide resistant. Spectrophotometric studies revealed that ascorbate-TMPD donated its electrons exclusively to cytochrome o, whereas the physiological substrates were oxidized via both cytochromes o and a. The effects of class II inhibitors on the oxidases suggest terminal branching of the electron transport chain at the cytochrome b level. A model of the respiratory system in N. meningitidis is proposed.  相似文献   

7.
Laccase is an enzyme that catalyzes the oxidation of phenolic compounds by coupling the reduction of oxygen to water. While many laccases have been identified in plant and fungal species, enzymes of prokaryotic origin are poorly known. Here we report the enzymological characterization of EpoA, a laccase-like extracytoplasmic phenol oxidase produced by Streptomyces griseus. EpoA was expressed and purified with an Escherichia coli host-vector system as a recombinant protein fused with a C-terminal histidine-tag (rEpoA). Physicochemical analyses showed that rEpoA comprises a stable homotrimer containing all three types of copper (types 1-3). Various known laccase substrates were oxidized by rEpoA, while neither syringaldazine nor guaiacol served as substrates. Among the substrates examined, rEpoA most effectively oxidized N,N-dimethyl-p-phenylenediamine sulphate with a Km value of 0.42 mM. Several metal chelators caused marked inhibition of rEpoA activity, implying the presence of a metal center essential for the oxidase activity. The pH and temperature optima of rEpoA were 6.5 and 40 degrees C, respectively. The enzyme retained 40% activity after preincubation at 70 degrees C for 60 min. EpoA-like activities were detected in cell extracts of 8/40 environmental actinomycetes strains, which suggests that similar oxidases are widely distributed among this group of bacteria.  相似文献   

8.
1. Antiserum to purified methylamine oxidase of Candida boidinii formed precipitin lines (with spurs) in double-diffusion tests with crude extracts of methylamine-grown cells of the following yeast species: Candida nagoyaensis, Candida nemodendra, Hansenula minuta, Hansenula polymorpha and Pichia pinus. No cross-reaction was observed with extracts of Candida lipolytica, Candida steatolytica, Candida tropicalis, Candida utilis, Pichia pastoris, Sporobolomyces albo-rubescens, Sporopachydermia cereana or Trigonopsis variabilis. Quantitative enzyme assays enabled the relative titre of antiserum against the various methylamine oxidases to be determined. 2. The amine oxidases from two non-cross-reacting species, C. utilis and P. pastoris, were purified to near homogeneity. 3. The methylamine oxidases, despite their serological non-similarity, showed very similar catalytic properties to methylamine oxidase from C. boidinii. Their heat-stability, pH optima, molecular weights, substrate specificities and sensitivity to inhibitors are reported. 4. The benzylamine oxidases of C. utilis and P. pastoris both oxidized putrescine, and the latter enzyme failed to show any cross-reaction with antibody to C. boidinii methylamine oxidase. Benzylamine oxidase from C. boidinii itself also did not cross-react with antibody to methylamine oxidase. The heat-stability, molecular weights, substrate specificities and sensitivity to inhibitors of the benzylamine/putrescine oxidases are reported. 5. The benzylamine/putrescine oxidase of C. utilis differed only slightly from that of C. boidinii. 6. Benzylamine/putrescine oxidase from P. pastoris differed from the Candida enzymes in heat-stability, subunit molecular weight and substrate specificity. In particular it catalysed the oxidation of the primary amino groups of spermine, spermidine, lysine, ornithine and 1,2-diaminoethane, which are not substrates for either of the Candida benzylamine oxidases that have been purified. 7. Spermine and spermidine were oxidized at both primary amino groups; in the case of spermidine this is a different specificity from that of plasma amine oxidase. 8. Under appropriate conditions, P. pastoris benzylamine/putrescine oxidase (which is very easy to purify) can be a useful analytical tool in measuring polyamines.  相似文献   

9.
Amperometric biosensors for glucose, ethanol, and biogenic amines (putrescine) were constructed using oxidase/peroxidase bienzyme systems. The H(2)O(2) produced by the oxidase in reaction with its substrate is converted into a measurable signal via a novel peroxidase purified from sweet potato peels. All developed biosensors are based on redox hydrogels formed of oxidases (glucose oxidase, alcohol oxidase, or amine oxidase) and the newly purified sweet potato peroxidase (SPP) cross-linked to a redox polymer. The developed electrodes were characterized (sensitivity, stability, and performances in organic medium) and compared with similarly built ones using the 'classical' horseradish peroxidase (HRP). The SPP-based electrodes displayed higher sensitivity and better detection limit for putrescine than those using HRP and were also shown to retain their activity in organic phase much better than the HPR based ones. The importance of attractive or repulsive electrostatic interactions between the peroxidases and oxidases (determined by their isoelectric points) were found to play an important role in the sensitivity of the obtained sensors.  相似文献   

10.
Alcohol oxidases (Alcohol: O2 Oxidoreductase; EC 1.1.3.x) are flavoenzymes that catalyze the oxidation of alcohols to the corresponding carbonyl compounds with a concomitant release of hydrogen peroxide. Based on substrate specificity, alcohol oxidases may be categorized broadly into four different groups namely, (a) short chain alcohol oxidase (SCAO), (b) long chain alcohol oxidase (LCAO), (c) aromatic alcohol oxidase (AAO), and (d) secondary alcohol oxidase (SAO). The sources reported for these enzymes are mostly limited to bacteria, yeast, fungi, plant, insect, and mollusks. However, the quantum of reports for each category of enzymes considerably varies across these sources. The enzymes belonging to SCAO and LCAO are intracellular in nature, whereas AAO and SAO are mostly secreted to the medium. SCAO and LCAO are invariably reported as multimeric proteins with very high holoenzyme molecular masses, but the molecular characteristics of these enzymes are yet to be clearly elucidated. One of the striking features of the alcohol oxidases that make them distinct from the widely known alcohol dehydrogenase is the avidly bound cofactor to the redox center of these enzymes that obviate the need to supplement cofactor during the catalytic reaction. These flavin-based redox enzymes have gained enormous importance in the development of various industrial processes and products primarily for developing biosensors and production of various industrially useful carbonyl compounds. The present review provides an overview on alcohol oxidases from different categories focusing research on these oxidases during the last decade along with their potential industrial applications.  相似文献   

11.
12.
F Heinz  S Reckel  J R Kalden 《Enzyme》1979,24(4):239-246
A new method for the determination of xanthine oxidase activity with xanthine or hypoxanthine is described. The hydrogen peroxide produced by the oxidation of the substrates is reduced by catalase in the presence of high concentrations of ethanol. The acetaldehyde formed is further oxidized by aldehyde dehydrogenase NAD or NADP-dependent. The reduction rate of the coenzymes were measured at 334 nm and utilized as indicators for the xanthine oxidase. The sensitivity of the method with xanthine as substrate can be doubled by the addition of uricase, which oxidizes uric acid to allantoin.  相似文献   

13.
The kinetics of oxidation of 4-hydroxybiphenyl (4-HBP) catalyzed by laccase from Polyporus pinsitus was studied in the presence of methyl syringate (MS), which acts as an electron-transfer mediator. Measurements were performed in 0.05 M acetate buffer, pH 5.5, in the presence of 4-HBP, MS, and laccase. It is shown that the oxidation rate of the lowly reactive substrate 4-HBP significantly increases during synergistic action of the highly reactive substrate MS. Bimolecular kinetic constants of interaction between the oxidized form of laccase and MS, the former and 4-HBP, and the oxidized form of MS and 4-HBP were calculated. A kinetic scheme of the synergistic substrate action is suggested; based on this scheme, the dependence of the initial rate on reagent concentration is derived. Analyzing experimental data, we obtained kinetic constants close to those obtained by modeling the processes.  相似文献   

14.
The inhibition of NADH oxidation but not of succinate oxidation by the low ubiquinone homologs UQ-2 and UQ-3 is not due to a lower rate of reduction of ubiquinone by NADH dehydrogenase: experiments in submitochondrial particles and in pentane-extracted mitochondria show that UQ-3 is reduced at similar rates using either NADH or succinate as substrates. The fact that reduced UQ-3 cannot be reoxidized when reduced by NADH but can be reoxidized when reduced by succinate may be explained by a compartmentation of ubiquinone.Using reduced ubiquinones as substrates of ubiquinol oxidase activity in intact mitochondria and in submitochondrial particles we found that ubiquinol-3 is oxidized at higher rates in submitochondrial particles than in mitochondria. The initial rates of ubiquinol oxidation increased with increasing lengths of isoprenoid side chains in mitochondria, but decreased in submitochondrial particles. These findings suggest that the site of oxidation of reduced ubiquinone is on the matrix side of the membrane; reduced ubiquinones may reach their oxidation site in mitochondria only crossing the lipid bilayer: the rate of diffusion of ubiquinol-3 is presumably lower than that of ubiquinol-7 due to the differences in hydrophobicity of the two quinones.  相似文献   

15.
The contributions of the authors to the research program 'Radicals in Enzymatic Catalysis' over the last ca. 5 years are summarized. Significant efforts were directed towards the design and testing of phenol-containing ligands for synthesizing radical-containing transition metal complexes as potential candidates for catalysis of organic substrates like alcohols, amines, aminophenols and catechols. Functional models for different copper oxidases, such as galactose oxidase, amine oxidases, phenoxazinone synthase and catechol oxidase, are reported. The copper complexes synthesized can mimic the function of the metalloenzymes galactose oxidase and amine oxidases by catalyzing the aerial oxidation of alcohols and amines. Even methanol could be oxidized, albeit with a low conversion, by a biradical-copper(II) compound. The presence of a primary kinetic isotope effect, similar to that for galactose oxidase, provides compelling evidence that H-atom abstraction from the alpha-C-atom of the substrates is the rate-limiting step. Although catechol oxidase and phenoxazinone synthase contain copper, manganese(IV) complexes containing radicals have been found to be useful to study synthetic systems and to understand the naturally occurring processes. An 'on-off' mechanism of the radicals without redox participation from the metal centers seems to be operative in the catalysis involving such metal-radical complexes.  相似文献   

16.
Cytokinin oxidase: Biochemical features and physiological significance   总被引:10,自引:0,他引:10  
The catabolism of cytokinin in plant tissues appears to be due, in large part, to the activity of a specific enzyme, cytokinin oxidase. This enzyme catalyses the oxidation of cytokinin substrates bearing unsaturated isoprenoid side chains, using molecular oxygen as the oxidant. In general, substrate specificity is highly conserved and cytokinin substrates bearing saturated or cyclic side chains do not serve as substrates for most cytokinin oxidases tested to date. Despite variation in molecular properties of the enzyme from a number of higher plants, oxygen is always required for the reaction. Cytokinin oxidases from several sources have been shown to be glycosylated. Cytokinin oxidase activity appears to be universally inhibited by cytokinin-active urea derivatives. Auxin has been reported to act as an allosteric regulator which increases activity of the enzyme.
Cytokinin oxidase activity is subject to tight regulation. Levels of the enzyme are controlled by a mechanism sensitive to cytokinin supply. The up-regulation of cytokinin oxidase expression in response to exogenous application of cytokinin suggests that the metabolic fate of exogenously applied cytokinins may not accurately mimic that of the endogenous compounds.
Cytokinin oxidase is believed to be a copper-containing amine oxidase (EC 1.4.3.6). Considerable evidence strongly supports a common mechanism for amine oxidases. It is possible that advances in understanding of other amine oxidases could be extrapolated to increase our understanding of cytokinin oxidase at the molecular level. This is discussed with reference to what is currently known about the catalytic mechanism of the enzyme. The possibility of pyrroloquinoline quinone, or a closely related compound, as a redox cofactor of cytokinin oxidase is considered, as are the implications of the glycosylated nature of the enzyme for its regulation and compartmentalisation within the cell.  相似文献   

17.
The rat hepatocyte catalyzed oxidation of 2',7'-dichlorofluorescin to form the fluorescent 2,7'-dichlorofluorescein was used to measure endogenous and xenobiotic-induced reactive oxygen species (ROS) formation by intact isolated rat hepatocytes. Various oxidase substrates and inhibitors were then used to identify the intracellular oxidases responsible. Endogenous ROS formation was markedly increased in catalase-inhibited or GSH-depleted hepatocytes, and was inhibited by ROS scavengers or desferoxamine. Endogenous ROS formation was also inhibited by cytochrome P450 inhibitors, but was not affected by oxypurinol, a xanthine oxidase inhibitor, or phenelzine, a monoamine oxidase inhibitor. Mitochondrial respiratory chain inhibitors or hypoxia, on the other hand, markedly increased ROS formation before cytotoxicity ensued. Furthermore, uncouplers of oxidative phosphorylation inhibited endogenous ROS formation. This suggests endogenous ROS formation can largely be attributed to oxygen reduction by reduced mitochondrial electron transport components and reduced cytochrome P450 isozymes. Addition of monoamine oxidase substrates increased antimycin A-resistant respiration and ROS formation before cytotoxicity ensued. Addition of peroxisomal substrates also increased antimycin A-resistant respiration but they were less effective at inducing ROS formation and were not cytotoxic. However, peroxisomal substrates readily induced ROS formation and were cytotoxic towards catalase-inhibited hepatocytes, which suggests that peroxisomal catalase removes endogenous H(2)O(2) formed in the peroxisomes. Hepatocyte catalyzed dichlorofluorescin oxidation induced by oxidase substrates, e.g., benzylamine, was correlated with the cytotoxicity induced in catalase-inhibited hepatocytes.  相似文献   

18.
Rat liver peroxisomes contain three acyl-CoA oxidases:palmitoyl-CoA oxidase, pristanoyl-CoA oxidase, and trihydroxycoprostanoyl-CoA oxidase. The three oxidases were separated by anion-exchange chromatography of a partially purified oxidase preparation, and the column eluate was analyzed for oxidase activity with different acyl-CoAs. Short chain mono (hexanoyl-) and dicarboxylyl (glutaryl-)-CoAs and prostaglandin E2-CoA were oxidized exclusively by palmitoyl-CoA oxidase. Long chain mono (palmitoyl-) and dicarboxylyl (hexadecanedioyl-)-CoAs were oxidized by palmitoyl-CoA oxidase and pristanoyl-CoA oxidase, the former enzyme catalyzing approximately 70% of the total eluate activity. The very long chain lignoceroyl-CoA was also oxidized by palmitoyl-CoA oxidase and pristanoyl-CoA oxidase, the latter enzyme catalyzing approximately 65% of the total eluate activity. Long chain 2-methyl branched acyl-CoAs (2-methylpalmitoyl-CoA and pristanoyl-CoA) were oxidized for approximately 90% by pristanoyl-CoA oxidase, the remaining activity being catalyzed by trihydroxycoprostanoyl-CoA oxidase. The short chain 2-methylhexanoyl-CoA was oxidized by trihydroxycoprostanoyl-CoA oxidase and pristanoyl-CoA oxidase (approximately 60 and 40%, respectively, of the total eluate activity). Trihydroxycoprostanoyl-CoA was oxidized exclusively by trihydroxycoprostanoyl-CoA oxidase. No oxidase activity was found with isovaleryl-CoA and isobutyryl-CoA. Substrate dependences of palmitoyl-CoA oxidase and pristanoyl-CoA oxidase were very similar when assayed with the same (common) substrate. Since the two oxidases were purified to a similar extent and with a similar yield, the contribution of each enzyme to substrate oxidation in the column eluate probably reflects its contribution in the intact liver.  相似文献   

19.
Kinetic properties of novel amine oxidase isolated from sainfoin (Onobrychis viciifolia) were compared to those of typical plant amine oxidase (EC 1.4.3.6) from lentil (Lens culinaris). The amine oxidase from sainfoin was active toward substrates, such as 1,5-diaminopentane (cadaverine) with K(m) of 0.09 mM and 1,4-diaminobutane (putrescine) with K(m) of 0.24 mM. The maximum rate of oxidation for cadaverine at saturating concentration was 2.7 fold higher than that of putrescine. The amine oxidase from lentil had the maximum rate for putrescine comparable to the rate of sainfoin amine oxidase with the same substrate. Both amine oxidases, like other plant Cu-amine oxidases, were inhibited by substrate analogs (1,5-diamino-3-pentanone, 1,4-diamino-2-butanone and aminoguanidine), Cu2+ chelating agents (diethyltriamine, 1,10-phenanthroline, 8-hydroxyquinoline, 2,2'-bipyridyl, imidazole, sodium cyanide and sodium azide), some alkaloids (L-lobeline and cinchonine), some lathyrogens (beta-aminopropionitrile and aminoacetonitrile) and other inhibitors (benzamide oxime, acetone oxime, hydroxylamine and pargyline). Tested by Ouchterlony's double diffusion in agarose gel, polyclonal antibodies against the amine oxidase from sainfoin, pea and grass pea cross-reacted with amine oxidases from several other Fabaceae and from barley (Hordeum vulgare) of Poaceae, while amine oxidase from the filamentous fungus Aspergillus niger did not cross-react at all. However, using Western blotting after SDS-PAGE with rabbit polyclonal antibodies against the amine oxidase from Aspergillus niger, some degree of similarity of plant amine oxidases from sainfoin, pea, field pea, grass pea, fenugreek, common melilot, white sweetclover and Vicia panonica with the A. niger amine oxidase was confirmed.  相似文献   

20.
Crude extract of Aspergillus niger AKU 3302 mycelia incubated with methylamine showed a single amine oxidase activity band in a developed polyacrylamide gel that weakly cross-reacted with the antibody against a copper/topa quinone-containing amine oxidase (AO-II) from the same strain induced by n-butylamine. Since the organism cannot grow on methylamine and the already known quinoprotein amine oxidases of the organism cannot catalyze oxidation of methylamine, the organism was forced to produce another enzyme that could oxidize methylamine when the mycelia were incubated with methylamine. The enzyme was separated and purified from the already known two quinoprotein amine oxidases formed in the same mycelia. The purified enzyme showed a sharp symmetric sedimentation peak in analytical ultracentrifugation showing S20,w0 of 6.5s. The molecular mass of 133 kDa estimated by gel chromatography and 66.6 kDa found by SDS-PAGE confirmed the dimeric structure of the enzyme. The purified enzyme was pink in color with an absorption maximum at 494 nm. The enzyme readily oxidized methylamine, n-hexylamine, and n-butylamine, but not benzylamine, histamine, or tyramine, favorite substrates for the already known two quinoprotein amine oxidases. Inactivation by carbonyl reagents and copper chelators suggested the presence of a copper/topa quinone cofactor. Spectrophotometric titration by p-nitrophenylhydrazine showed one reactive carbonyl group per subunit and redox-cyclic quinone staining confirmed the presence of a quinone cofactor. pH-dependent shift of the absorption spectrum of the enzyme-p-nitrophenylhydrazone (469 nm at neutral to 577 nm at alkaline pH) supported the identity of the cofactor with topaquinone. Nothern blot analysis indicated that the methylamine oxidase encoding gene is largely different from the already known amine oxidase in the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号