首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lecanicillium fungicola causes dry bubble disease in commercially cultivated mushroom. This review summarizes current knowledge on the biology of the pathogen and the interaction between the pathogen and its most important host, the white‐button mushroom, Agaricus bisporus. The ecology of the pathogen is discussed with emphasis on host range, dispersal and primary source of infection. In addition, current knowledge on mushroom defence mechanisms is reviewed. Taxonomy: Lecanicillium fungicola (Preuss) Zare and Gams: Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Sordariomycetes; Subclass Hypocreales; Order Hypocreomycetidae; Family Cordycipitaceae; genus Lecanicillium. Host range: Agaricus bisporus, Agaricus bitorquis and Pleurotus ostreatus. Although its pathogenicity for other species has not been established, it has been isolated from numerous other basidiomycetes. Disease symptoms: Disease symptoms vary from small necrotic lesions on the caps of the fruiting bodies to partially deformed fruiting bodies, called stipe blow‐out, or totally deformed and undifferentiated masses of mushroom tissue, called dry bubble. The disease symptoms and severity depend on the time point of infection. Small necrotic lesions result from late infections on the fruiting bodies, whereas stipe blow‐out and dry bubble are the result of interactions between the pathogen and the host in the casing layer. Economic importance: Lecanicillium fungicola is a devastating pathogen in the mushroom industry and causes significant losses in the commercial production of its main host, Agaricus bisporus. Annual costs for mushroom growers are estimated at 2–4% of total revenue. Reports on the disease originate mainly from North America and Europe. Although China is the main producer of white‐button mushrooms in the world, little is known in the international literature about the impact of dry bubble disease in this region. Control: The control of L. fungicola relies on strict hygiene and the use of fungicides. Few chemicals can be used for the control of dry bubble because the host is also sensitive to fungicides. Notably, the development of resistance of L. fungicola has been reported against the fungicides that are used to control dry bubble disease. In addition, some of these fungicides may be banned in the near future. Useful websites: http://www.mycobank.org ; http://www.isms.biz ; http://www.cbs.knaw.nl  相似文献   

2.
Dry bubble disease caused by the fungal pathogen Verticillium fungicola1 is responsible for large losses to the mushroom (Agaricus bisporus) industry. The pathogen induces various symptoms on the host, bubbles (undifferentiated spherical masses), bent and/or split stipes (blowout) and spotty caps. Inoculation of A. bisporus crops with isolates of V. fungicola var. fungicola of various degrees of aggressiveness showed that the more aggressive isolates induced higher numbers of bubbles. The production of other symptoms did not vary with the isolate of pathogen. The total weight of the crop (healthy and diseased mushrooms) was not significantly affected by the disease, but inoculation with highly aggressive isolates resulted in a significant increase in the total numbers of mushrooms. Two hypotheses are proposed to explain the effect of the pathogen on fruiting initiation in relation to aggressiveness.  相似文献   

3.
Agaricus bisporus is the most widely cultivated mushroom. The mushroom crop is subjected to several fungal diseases. Dry bubble disease caused by Lecanicillium fungicola is among notorious diseases of A. bisporus. This study aimed to assess phenotypic resistance to dry bubble disease among A. bisporus wild strains, collected from Iran regions. The reliability of resistance evaluations regarding disease incidence and intensity was well documented. The extraordinary tolerance of some wild strains to even high degrees of inoculum concentrations (107 and 108 spore/m2 mushroom growth bed) of the pathogen in compare to commercial cultivars approved potentials of the wild germplasm in breeding programs for resistance. Also, the potential of some Microsatellite loci for the molecular-based rapid screening of tolerance was established by attributing SSR loci of phenotypically tolerant strains to QTLs for dry-bubble resistance-related traits.  相似文献   

4.
Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease   总被引:1,自引:0,他引:1  
Dry bubble disease caused by Lecanicillium fungicola is a persistent problem in the cultivation of the white button mushroom (Agaricus bisporus). Because control is hampered by chemicals becoming less effective, new ways to control dry bubble disease are urgently required. 1-Octen-3-ol is a volatile that is produced by A. bisporus and many other fungi. In A. bisporus, it has been implicated in self-inhibition of fruiting body formation while it was shown to inhibit spore germination in ascomycetes. Here, we show that 1-octen-3-ol inhibits germination of L. fungicola and that enhanced levels of 1-octen-3-ol can effectively control the malady. In addition, application of 1-octen-3-ol stimulates growth of bacterial populations in the casing and of Pseudomonas spp. specifically. Pseudomonas spp. and other bacteria have been demonstrated to play part in both the onset of mushroom formation in A. bisporus, as well as the inhibition of L. fungicola spore germination. A potential role of 1-octen-3-ol in the ecology of L. fungicola is discussed.  相似文献   

5.
Diseased fruit bodies of Agaricus bitorquis, with similar symptoms to those caused by dry bubble on Agaricus bisporus, were observed in some Spanish crops during summer 1999. Isolates of Verticillium fungicola from A. bitorquis and A. bisporus were submitted to different temperatures and to prochloraz–Mn sensitivity tests. All the isolates collected from A. bitorquis and A. bisporus were identified as V. fungicola var. fungicola. Artificial infections of A. bisporus and A. bitorquis with V. fungicola var. fungicola are also described in the present study. The appearance of natural infections of V. fungicola var. fungicola in A. bitorquis crops could well be due to the growing temperatures used in Spain, which are considerably below those used in other countries.  相似文献   

6.
The genetic and physiological variability of Verticillium fungicola var. aleophilum responsible for Agaricus bisporus dry bubble disease in North America is well documented but little is known about the var. fungicola affecting European crops. Variability was assessed within this variety and compared with that reported for the var. aleophilum. Eighteen isolates of V. fungicola var. fungicola and four var. aleophilum isolates were analysed for DNA polymorphism, mycelial growth, response to biochemicals produced by A. bisporus, fungicide resistance, and pathogenicity assessed by direct inoculation on sporophore or casing contamination. RAPD and AFLP markers delineated three French isolates from a homogeneous group containing the other var. fungicola isolates, but no correlation could be drawn between DNA polymorphism and the various traits studied. The var. fungicola isolates were more susceptible than the var. aleophilum isolates to the antibiosis effect of A. bisporus. Only mycelial growth rate at 23 °C could explain the variability in aggressiveness among the European isolates. The putative effect of the post-incubation temperature on contamination during mushroom cultivation was discussed. This work emphasized that, like the American var. aleophilum, the var. fungicola in Europe is genetically homogeneous, but physiological diversity exists, especially in France where it could be related to less standardized cultural practices.  相似文献   

7.
Mushroom sciarid flies Lycoriella ingenua (Dufour) and Bradysia ocellaris (Comstock) are major pests of cultivated mushrooms, Agaricus bisporus (Lange) Imbach. The economic threshold of these pests is very low because they vector pathogens across mushroom beds, e.g. Verticillium fungicola which causes ‘dry bubble’ disease. Under controlled conditions, B. ocellaris transported more V. fungicola spores than L. ingenua from infected to sterile culture plates. Similar results were obtained when L. ingenua and B. ocellaris were collected from a growing room infected with V. fungicola then introduced onto sterile culture plates for 90 min. The external morphology of B. ocellaris and L. ingenua was examined using scanning electron microscopy. The micrographs showed clusters of V. fungicola spores attached to the inner side of a comb‐like row of bristles on the fore tibia of B. ocellaris whereas L. ingenua does not possess an equivalent structure on the fore tibia. These morphological differences are the most probable explanation for the greater competence of B. ocellaris as a vector of V. fungicola compared with L. ingenua.  相似文献   

8.
In a casein nutrient solution, Verticillium fungiocla, the causal agent of the dry bubble disease of the cultivated mushroom Agaricus bisporus, produces a proteolytic enzyme. The effects of the pH and of inhibitors on the protease activity and the heat stability of the enzyme are described. The protease is of interest in connection with the attacking mechanism of Verticillium fungicola.  相似文献   

9.
10.
Athey-Pollard  A.L.  Kirby  M.  Potter  S.  Stringer  C.  Mills  P.R.  Foster  G.D. 《Mycopathologia》2003,156(1):19-23
The 3 regions of the gene encoding the cap binding protein eIF4E were successfully isolated from Agaricus bisporus and Verticillium fungicola using a degenerate primer within the eIF4E gene and an anchored oligo d(T) primer. The deduced amino acid sequences contained 173 residues for A. bisporus and 171 residues V. fungicola. Analysis of these sequences shows that despite conserved regions of homology, centering around tryptophan residues, A. bisporus and V. fungicola are very diverse at the amino acid and DNA level. Percentage homology between the two fungi is low at the nucleotide, 35%, and amino acid level, 29%. The highest degree of similarity between the A. bisporus sequence and other published sequences is with the Homo sapiens eIF4E sequence (32%). V. fungicola exhibited highest homology with the eIF4E sequence from Caenorhabditis elegans (34%). Southern analysis of genomic DNA indicated a single copy of the gene within the A. bisporus genome.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
The composition of aroma compounds of dry champignons (Agaricus bisporus L.) were identified using capillary gas chromatography and chromatography-mass spectrometry. In total, 56 compounds were identified. It was found that the flavor of dry mushrooms was formed by the volatile compounds produced as a result of enzymatic and oxidative conversion of unsaturated fatty acids as well as in the Maillard reaction. Unsaturated alcohols and ketones containing eight carbon atoms determined the mushroom note of the product. The specific aroma of dry mushrooms was determined by a complex composition of substituted sul- fur-, oxygen-, and nitrogen-containing heterocyclic compounds as well as by aliphatic carbonyl compounds and methional. It was found that the concentrations of volatile carbonylic and heterocyclic compounds increased after the addition of a mixture of amino acids to mushrooms before drying. As a result, the intensity of the aroma of dry mushrooms increased.  相似文献   

12.
13.
Staphylococcus aureus is a major human pathogen and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. While S. aureus protective antigens have been identified in the literature, the majority have only been tested in a single animal model of disease. We wished to evaluate the ability of one S. aureus vaccine antigen to protect in multiple mouse models, thus assessing whether protection in one model translates to protection in other models encompassing the full breadth of infections the pathogen can cause. We chose to focus on genetically inactivated alpha toxin mutant HlaH35L. We evaluated the protection afforded by this antigen in three models of infection using the same vaccine dose, regimen, route of immunization, adjuvant, and challenge strain. When mice were immunized with HlaH35L and challenged via a skin and soft tissue infection model, HlaH35L immunization led to a less severe infection and decreased S. aureus levels at the challenge site when compared to controls. Challenge of HlaH35L-immunized mice using a systemic infection model resulted in a limited, but statistically significant decrease in bacterial colonization as compared to that observed with control mice. In contrast, in a prosthetic implant model of chronic biofilm infection, there was no significant difference in bacterial levels when compared to controls. These results demonstrate that vaccines may confer protection against one form of S. aureus disease without conferring protection against other disease presentations and thus underscore a significant challenge in S. aureus vaccine development.  相似文献   

14.
15.
Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and hence pathogen acquisition by) cucumber beetles.  相似文献   

16.
Leached spent mushroom compost (SMC) and its extract were tested to suppress Lecanicillium fungicola in white button mushroom. Sterile and non-sterile mixture of SMC and peat were used to assess suppressiveness against L. fungicola in greenhouse experiments. The extract of SMC was prepared with sterile, non-sterile, filtered, supplied with nystatin, streptomycin and penicillin antibiotics to evaluate their effect in suppression of pathogen in vitro. Isolated bacteria from SMC extract were tested for antagonism rate against Lecanicillium fungicola. The results of the experiments showed that all applications rate of none-sterile SMC were effective in control of pathogen. However, the sterile SMC amendments did not have a positive effect on the pathogen suppression in vitro or in vivo, as was expected. The treatments amended with SMC 100% and 60% showed the most suppressive effect in the control of pathogen. Using of non-sterile SMC 20%, 40%, 60% and peat soil were most effective in mushroom yield. The extract of leached SMC showed inhibition of L. fungicola in petri dishes. Three bacteria isolated from extract, Bacillus subtilis, Bacillus licheniformis and Bacillus amyloliquefacien identified using 16s rRNA, showed an antagonistic effect with the fungal growth.  相似文献   

17.
Proliferation of fungal pathogens, such as Mycogone perniciosa, can severely affect the yields of cultivated mushrooms, including that of the button mushroom, Agaricus bisporus. A reduction in the number of fungicidal products approved for commercial application is currently providing new challenges to the mushroom industry. Forty essential oils, seven pure terpenoids and one phenylpropanoid were screened in vitro to determine the abilities of these substances to inhibit the growth of M. perniciosa. The fungal growth medium of both A. bisporus and M. perniciosa was supplemented with each test substance at a concentration of 50 μL/L. Ten essential oils were further investigated at lower concentrations ranging from 5 to 40 μL/L. The main components of these oils were determined by GC–FID and GC–MS. Lemon verbena (Lippia citriodora), lemongrass (Cymbopogon citratus) and thyme (Thymus vulgaris) oils were found to substantially inhibit the growth of the pathogen, while demonstrating lower toxicity towards A. bisporus than any of the other oils tested. A preliminary in vivo trial using M. perniciosa-inoculated casings revealed that the preventative use of lemon verbena or thyme oils was able to control the development of the disease. A commercial trial using these oils, as well as two of their main components (nerol and thymol), at a concentration of 40 μL/L, revealed that none of these treatments were detrimental to the growth of the A. bisporus and an overall yield similar to that following application of a commercial fungicide (Chronos 450 SC) was obtained. These results suggest that essential oils or mixtures of selected pure components of essential oils may in future find application in button mushroom production, either as a substitute for synthetic fungicides or as an additional protective measure.  相似文献   

18.
Lecanicillium fungicola (formerly Verticillium fungicola) is responsible for dry bubble disease in the white button mushroom Agaricus bisporus. Selection for resistance to this pathogen raises an important challenge for mushroom breeders. We have investigated the inheritance of resistance to dry bubble under artificial inoculation in three independent experiments, using a progeny of 89 hybrids derived from an intervarietal A. bisporus var. bisporus×A. bisporus var. burnettii cross. Overall, phenotypic correlations were highly significant between the different experiments. Principal component analysis, together with analysis of variance results stated that the disease reactions were accurately assessed using the percentage of bubbles (PB) and the percentage of spotty cap mushrooms (PS) separately rather than with the combination of both. An original contribution of this study lies in the effective use of area under the disease-progress curve (AUDPC) to describe the dry bubble resistance. The continuous phenotypic distribution observed for the resistance traits suggested that tolerance to dry bubble was under polygenic control. Heritability estimates for either PB or AUDPC were high (0.67-0.86) while it was inconsistent for PS (0.33-0.68) suggesting a strong impact of the environment on this latter trait. Earliness and latent period were found highly correlated with disease incidence. The earliest strains appeared to be the most resistant ones. These results contribute to disentangle the complex fungal-fungal A. bisporus / L. fungicola interaction and to provide genetic basis as a prerequisite for mushroom breeding program.  相似文献   

19.
Priming plants by non-pathogenic bacteria allows the host to save energy and to reduce time needed for development of defense reaction during a pathogen attack. However, information on the role of endophytes in plant defense is limited. Here, the ability of endophytic bacteria to promote growth and resistance of potato plants towards infection by the necrotroph Pectobacterium atrosepticum was studied. A Pseudomonas sp. strain was selected due to antagonism towards bacterial pathogens and a Methylobacterium sp. strain because of efficient plant colonization. The aim of this study was to find if there is any correlation between plant growth promotion and induction of resistance by endophytes of potato, as well as to study the putative mechanisms of endophytes interacting with the plant during resistance induction. Both tested strains promoted growth of potato shoots but only the Pseudomonas sp. increased potato resistance towards the soft rot disease. Induction of disease resistance by the Methylobacterium sp. was inversely proportional to the size of bacterial population used for inoculation. The plant antioxidant system was moderately activated during the induction of resistance by the biocontrol strains. qPCR data on expression of marker genes of induced systemic resistance and acquired systemic resistance in endophyte-infected Arabidopsis plants showed activation of both salicylic acid and jasmonate/ethylene-dependent pathways after challenge inoculation with the pathogen. We suggest that some endophytes have the potential to activate both basal and inducible plant defense systems, whereas the growth promotion by biocontrol strains may not correlate with induction of disease resistance.  相似文献   

20.
Root colonization with arbuscular mycorrhizal fungi (AMF) enhances plant resistance particularly against soil‐borne pathogenic fungi. In this study, mycorrhizal inoculation with Glomus mosseae (Gm) significantly alleviated tomato mould disease caused by the air‐borne fungal pathogen, Cladosporium fulvum (Cf). The disease index (DI) in local leaves (receiving pathogen inoculation) and systemic leaves (just above the local leaf without pathogen inoculation) was 36.4% and 11.7% in mycorrhizal plants, respectively, whereas DI was 59.6% and 36.4% in the corresponding leaves of AMF non‐inoculated plants, after 50 days of Gm inoculation, corresponding to 15 days after Cf inoculation by leaf infiltration. Foliar spray inoculation with Cf also revealed that AMF pre‐inoculated plants had a higher resistance against subsequent pathogen infection, where the DI was 41.3% in mycorrhizal plants vs. 64.4% in AMF non‐inoculated plants. AMF‐inoculated plants showed significantly higher fresh and dry weight than non‐inoculated plants under both control (without pathogen) and pathogen treatments. AMF‐inoculated plants exhibited significant increases in activities of superoxide dismutase and peroxidase, along with decreases in levels of H2O2 and malondialdehyde, compared with non‐inoculated plants after pathogen inoculation. AMF inoculation led to increases in total chlorophyll contents and net photosynthesis rate as compared with non‐inoculated plants under control and pathogen infection. Pathogen infection on AMF non‐inoculated plants led to decreases in chlorophyll fluorescence parameters. However, pathogen infection did not affect these parameters in mycorrhizal plants. Taken together, these results indicate that AMF colonization may play an important role in plant resistance against air‐borne pathogen infection by maintaining redox poise and photosynthetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号