首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most signal transduction and cell signaling pathways are mediated by protein kinases. Protein kinases have emerged as important cellular regulatory proteins in many aspects of neoplasia. Protein kinase inhibitors offer the opportunity to target diseases such as cancer with chemotherapeutic agents specific for the causative molecular defect. In order to identify possible targets and assess kinase inhibitors, quantitative methods for analyzing protein phosphorylation have been developed. This review examines some of the current formats used for quantifying kinase function for drug development.  相似文献   

2.
The postsynaptic density (PSD) signaling machinery contains proteins with diverse functions. Brain region-specific variations in PSD components mediate distinct physiological responses to synaptic activation. We have developed mass spectrometry-based methods to comprehensively compare both relative protein expression and phosphorylation status from proteins present in biochemical preparations of postsynaptic density. Using these methods, we determined the relative expression of 2159 proteins and 1564 phosphorylation sites in PSD preparations from murine cortex, midbrain, cerebellum, and hippocampus. These experiments were conducted twice using independent biological replicates, which allowed us to assess the experimental and biological variability in this system. Concerning protein expression, cluster analysis revealed that known functionally associated proteins display coordinated synaptic expression. Therefore, proteins identified as co-clustering with known protein complexes are prime candidates for assignment as previously unrecognized components. Concerning degree of phosphorylation, we observed more extensive phosphorylation sites on N-methyl-D-aspartate (NMDA) receptors than alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, consistent with the central role of N-methyl-D-aspartate receptors in processing synaptic transmission patterns. Average kinase and phosphatase levels were highest in the hippocampus, correlating with a higher overall phosphopeptide abundance present in this brain region. These findings suggest that the hippocampus utilizes reversible protein phosphorylation to a greater extent than other brain regions when modifying synaptic strength.  相似文献   

3.
The quantitative analysis of signaling networks requires highly sensitive methods for the time-resolved determination of protein phosphorylation. For this reason, we developed a quantitative protein microarray that monitors the activation of multiple signaling pathways in parallel, and at high temporal resolution. A label-free sandwich approach was combined with near infrared detection, thus permitting the accurate quantification of low-level phosphoproteins in limited biological samples corresponding to less than 50,000 cells, and with a very low standard deviation of approximately 5%. The identification of suitable antibody pairs was facilitated by determining their accuracy and dynamic range using our customized software package Quantpro. Thus, we are providing an important tool to generate quantitative data for systems biology approaches, and to drive innovative diagnostic applications.  相似文献   

4.
5.
Ultrasensitive detection of minute amounts of phosphorylated proteins and peptides is a key requirement for unraveling many of the most important signal transduction pathways in mammalian systems. Protein microarrays are potentially useful tools for sensitive screening of global protein expression and post-translational modifications, such as phosphorylation. However, the analysis of signaling pathways has been hampered by a lack of reagents capable of conveniently detecting the targets of protein kinases. Historically, phosphorylation detection methods have relied upon either radioisotopes ((gamma-(32)P)ATP(gamma-(33)P)ATP labeling) or phosphoamino acid-selective antibodies. Both of these methods suffer from relatively well-known shortcomings. In this study, a small molecule fluorophore phosphosensor technology is described, referred to as Pro-Q Diamond dye, which is capable of ultrasensitive global detection and quantitation of phosphorylated amino acid residues in peptides and proteins displayed on microarrays. The utility of the fluorescent Pro-Q Diamond phosphosensor dye technology is demonstrated using phosphoproteins and phosphopeptides as well as with protein kinase reactions performed in miniaturized microarray assay format. Instead of applying a phosphoamino acid-selective antibody labeled with a fluorescent or enzymatic tag for detection, a small, fluorescent probe is employed as a universal sensor of phosphorylation status. The detection limit for phosphoproteins on a variety of different commercially available protein array substrates was found to be 312-625 fg, depending upon the number of phosphate residues. Characterization of the enzymatic phosphorylation of immobilized peptide targets with Pro-Q Diamond dye readily permits differentiation between specific and non-specific peptide labeling at picogram to subpicogram levels of detection sensitivity.  相似文献   

6.
Quantitative estimations of zoosporic fungi in the environment have historically received little attention, primarily due to methodological challenges and their complex life cycles. Conventional methods for quantitative analysis of zoosporic fungi to date have mainly relied on direct observation and baiting techniques, with subsequent fungal identification in the laboratory using morphological characteristics. Although these methods are still fundamentally useful, there has been an increasing preference for quantitative microscopic methods based on staining with fluorescent dyes, as well as the use of hybridization probes. More recently however PCR based methods for profiling and quantification (semi- and absolute) have proven to be rapid and accurate diagnostic tools for assessing zoosporic fungal assemblages in environmental samples. Further application of next generation sequencing technologies will however not only advance our quantitative understanding of zoosporic fungal ecology, but also their function through the analysis of their genomes and gene expression as resources and databases expand in the future. Nevertheless, it is still necessary to complement these molecular-based approaches with cultivation-based methods in order to gain a fuller quantitative understanding of the ecological and physiological roles of zoosporic fungi.  相似文献   

7.
Phosphorylation is one of the most relevant and ubiquitous post-translational modifications. Despite its relevance, the analysis of protein phosphorylation has been revealed as one of the most challenging tasks due to its highly dynamic nature and low stoichiometry. However, the development and introduction of new analytical methods are modifying rapidly and substantially this field. Especially important has been the introduction of more sensitive and specific methods for phosphoprotein and phosphopeptide purification as well as the use of more sensitive and accurate MS-based analytical methods. The integration of both approaches has enabled large-scale phosphoproteome studies to be performed, an unimaginable task few years ago. Additionally, methods originally developed for differential proteomics have been adapted making the study of the highly dynamic nature of protein phosphorylation feasible. This review aims at offering an overview on the most frequently used methods in phosphoprotein and phosphopeptide enrichment as well as on the most recent MS-based analysis strategies. Current strategies for quantitative phosphoproteomics and the study of the dynamics of protein phosphorylation are highlighted.  相似文献   

8.
9.
BackgroundTargeted protein degradation relies on inducing proximity between an E3 ubiquitin ligase and a target protein, and subsequent proteasomal degradation of the latter. Biophysical methods allow the measurement of the ternary complex formation by recombinant target and E3 ligase proteins in the presence of molecular glues and bifunctional degraders. The development of new chemotypes of degraders mediating ternary complex formation of unknown dimensions and geometries requires the use of different biophysical approaches.MethodsThe TR-FRET and AlphaLISA platforms have been applied to study molecular glues and bifunctional degraders. The performance of the label-based proximity assays was compared with the BLI method, which is a label-free, sensor-based approach.ResultsWe present and compare two commonly used assays to monitor proximity induction, AlphaLISA and TR-FRET. The LinkScape system consisting of the CaptorBait peptide and the CaptorPrey protein is a novel method of protein labeling compatible with TR-FRET assay.ConclusionsThe TR-FRET and AlphaLISA proximity assays enable detection of ternary complexes formed between an E3 Ligase, a target protein and a small molecule degrader. Experiments with different chemotypes of GSPT1 degraders showed that ALphaLISA was more susceptible to chemotype-dependent interference than TR-FRET assay.General significanceThe discovery and optimization of small-molecule inducers of ternary complexes is greatly accelerated by using biophysical assays. The LinkScape-based TR-FRET assay is an alternative to antibody-based proximity assays due to the CaptorPrey's subnanomolar affinity to the CaptorBait-tagged protein target, and the 10-fold lower molecular weight of the CaptorPrey protein compared to the antibody.  相似文献   

10.
Protein phosphorylation is a widespread and important post-translational modification. Despite recent advances in phosphoproteomic methods, phosphopeptide identification and site localization remain challenging. Electron capture dissociation has inherent advantages for phosphorylation analysis. The use of electron capture dissociation in this area to date is reviewed and future prospects are outlined.  相似文献   

11.
In the past several years, capillary electrophoresis (CE) has generated considerable interest from pharmaceutical companies for control of both the chiral and achiral purity of bulk drugs and drug products. This paper evaluates the use of CE as: (1) a technique complementary to HPLC for the determination of peak homogeneity of a drug, (2) for determination of chiral purity, and (3) for determination of achiral purity. It would be greatly advantageous if CE could be used to determine both the chiral and achiral purity in a single assay. This investigation compares the results obtained for the separation of the enantiomers of duloxetine using several neutral cyclodextrins to those obtained using anionic cyclodextrins (sulfobutyl ether derivatives) as chiral selectors added to the separation buffer. In addition, it reports chiral separations obtained by using neutral cyclodextrins in a sulfonic acid-coated capillary column, which give a negatively charged capillary surface and electro-osmotic flow even in low pH buffers. The possible mechanism of separation is discussed. © 1996 Wiley-Liss, Inc.  相似文献   

12.
OBJECTIVE: Obesity is typically developed over long time and reflected in an energy imbalance, which is too small to be measured and controlled. Our objective is to formulate a mathematical model for the relation between the change in body mass and the values of the energy intake and the energy expenditure, controlled by the physical activity factor PAF. DATA AND THEORY: The uncontrolled components of energy expenditure increases as result of body mass increase: expenditure of a larger mass and expenditure to convert matter in intake into tissue. Both contributions depend on the fraction of fat in the added tissue. Based on data from the literature, the fraction of fat in added tissue and the energy required to convert energy into tissue are estimated and included in the model. RESULTS: Application of the theory shows that an increase in body mass of 1 kg/year corresponds to an energy imbalance of 71 kJ/d for men. Of this imbalance, 82% are stored as new tissue, while 18% are used for energy conversion. If a man in steady state changes energy intake by 0.1 MJ/d, keeping the physical activity factor constant, then the corresponding increase in steady-state body mass is 1.77 kg/PAF, and it will take 320/PAF days before half the change of body mass has taken place. A typical value for PAF is 1.8. CONCLUSION: Energy-based theoretical relations between the various factors involved in energy balance help identifying and quantifying the components of the energy balance and understanding their relations during development of obesity. The inclusion of increased energy expenditure to convert food energy to tissue changes previous estimates of the energy imbalance by about 20 percent.  相似文献   

13.
During recent decades significant progress in studies of the molecular basis of socially significant diseases has been achieved due to introduction of high-throughput methods of genomics and proteomics. Numerous studies, performed within the global program “Human Proteome,” were aimed at identifying all possible proteins in various (including cancer) cell cultures and tissues. One of the aims was to identify socalled biomarkers—the proteins, specific for certain pathologies. However, many studies have shown that the development of the disease is not associated with appearance of new proteins, but it depends on the expression level of certain genes or specific proteoforms representing splice variants, single amino acid polymorphism (SAP) and post-translational modifications (PTM) of proteins. PTMs can play a key role in the development of pathology, because they activate various regulatory or structural proteins in most cellular processes. Among such modifications, phosphorylation appears to be the most significant PTM. This review considers methods of analysis of protein phosphorylation used in studies of the molecular basis of oncological diseases; it contains examples illustrating contribution of modified proteins directly involved in their development as well as examples of screening of such crucial PTMs in diagnostics and selection of methods for treatment.  相似文献   

14.
Computational methods for protein function analysis   总被引:2,自引:0,他引:2  
Two recent advances have had the greatest impact on protein function analysis so far: the complete sequences of genomes and mRNA expression level profiles. The former has spurred the development of novel techniques to study protein function: phylogenetic profiles and gene clusters. The latter has introduced a method, not based on sequence homology, that enables one to group together functionally related genes.  相似文献   

15.
Protein complexes have largely been studied by immunoaffinity purification and (mass spectrometric) analysis. Although this approach has been widely and successfully used it is limited because it has difficulties reliably discriminating true from false protein complex components, identifying post-translational modifications, and detecting quantitative changes in complex composition or state of modification of complex components. We have developed a protocol that enables us to determine, in a single LC-MALDI-TOF/TOF analysis, the true protein constituents of a complex, to detect changes in the complex composition, and to localize phosphorylation sites and estimate their respective stoichiometry. The method is based on the combination of fourplex iTRAQ (isobaric tags for relative and absolute quantification) isobaric labeling and protein phosphatase treatment of substrates. It was evaluated on model peptides and proteins and on the complex Ccl1-Kin28-Tfb3 isolated by tandem affinity purification from yeast cells. The two known phosphosites in Kin28 and Tfb3 could be reproducibly shown to be fully modified. The protocol was then applied to the analysis of samples immunopurified from Drosophila melanogaster cells expressing an epitope-tagged form of the insulin receptor substrate homologue Chico. These experiments allowed us to identify 14-3-3epsilon, 14-3-3zeta, and the insulin receptor as specific Chico interactors. In a further experiment, we compared the immunopurified materials obtained from tagged Chico-expressing cells that were either treated with insulin or left unstimulated. This analysis showed that hormone stimulation increases the association of 14-3-3 proteins with Chico and modulates several phosphorylation sites of the bait, some of which are located within predicted recognition motives of 14-3-3 proteins.  相似文献   

16.
To gain insight into the role of protein phosphorylation during early mammalian development, seven mouse preimplantation stages were metabolically labeled with radioactive orthophosphate and the radiolabeled proteins identified using gel electrophoresis and autoradiography. The results obtained indicate that there are marked differences in protein phosphorylation patterns between the zygote and two-cell stage and between the morula and blastocyst stage. In addition, there is a compaction-specific change in the phosphorylation profile of three components of Mr 37,000. This compaction-specific change takes place during compaction in the eight-cell embryo; thus, it is the first biochemical change specifically correlated to this important event of early development.  相似文献   

17.
Protein phosphorylation is a key regulatory factor in all aspects of plant biology; most regulatory pathways are governed by the reversible phosphorylation of proteins. To better understand the role that phosphorylated proteins play in a woody model plant, we performed a systemic analysis of the phosphoproteome from Populus leaves using high accuracy NanoLC–MS/MS in combination with biochemical enrichments using strong cation exchange chromatography and titanium dioxide chromatography. We identified 104 phosphopeptides from 94 phosphoproteins and determined 111 phosphorylation sites including 93 occurring on serine residues and 18 on threonine residues. The identified phosphoproteins are involved in a wide variety of metabolic processes. Among these identified phosphoproteins, 68 phosphorylation sites (72 %) were located outside of conserved domains. The identified phosphopeptides share a common phosphorylation motif of pS/pT-P/D-S/A. These data suggest that the Populus metabolism and gene regulation machinery are major targets of phosphorylation. To our knowledge, this is the first gel-free, large-scale phosphoproteomics analysis in woody plants. The identified phosphorylation sites will be a valuable resource for many fields of plant biology, and information gained from the study will provide a better understanding of protein phosphorylation.  相似文献   

18.
Protein kinases are among the most promising targets for drug discovery and development, mostly in oncology but also in other fields such as inflammation, Alzheimer's, and infectious diseases. The Integrated Technology Platform Protein Kinases was designed as a comprehensive tool for drug discovery in thefield of oncology. It combines modules for the identification and validation of novel target protein kinases, a unique panel of active recombinant protein kinases, high-throughput screening, selectivity profiling, cellular testing, and in vivo tumor models. Here we give an overview of the Integrated Technology Platform Protein Kinases as well as data that validate each module.  相似文献   

19.
20.
A systematic approach to the analysis of protein phosphorylation   总被引:29,自引:0,他引:29  
Reversible protein phosphorylation has been known for some time to control a wide range of biological functions and activities. Thus determination of the site(s) of protein phosphorylation has been an essential step in the analysis of the control of many biological systems. However, direct determination of individual phosphorylation sites occurring on phosphoproteins in vivo has been difficult to date, typically requiring the purification to homogeneity of the phosphoprotein of interest before analysis. Thus, there has been a substantial need for a more rapid and general method for the analysis of protein phosphorylation in complex protein mixtures. Here we describe such an approach to protein phosphorylation analysis. It consists of three steps: (1) selective phosphopeptide isolation from a peptide mixture via a sequence of chemical reactions, (2) phosphopeptide analysis by automated liquid chromatography-tandem mass spectrometry (LC-MS/MS), and (3) identification of the phosphoprotein and the phosphorylated residue(s) by correlation of tandem mass spectrometric data with sequence databases. By utilizing various phosphoprotein standards and a whole yeast cell lysate, we demonstrate that the method is equally applicable to serine-, threonine- and tyrosine-phosphorylated proteins, and is capable of selectively isolating and identifying phosphopeptides present in a highly complex peptide mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号