首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A novel Gram-negative, aerobic, slightly halophilic, yellow-pigmented, oxidase-negative, Voges–Proskauer positive, non-spore-forming bacterium, designated YIM M 13059T, was isolated from a sediment sample collected from the South China Sea at a depth of 310 m. Optimal growth was found to occur at 28–30 °C, pH 7.0 and in the presence of 3–4 % (w/v) NaCl. Cells were observed to be rod-shaped and motile by peritrichous flagella. The polar lipids of strain YIM M 13059T were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a ninhydrin-positive phospholipid, one glycolipid and two unknown phospholipids. The predominant respiratory quinone was determined to be Q-9. The major fatty acids were identified as C18:1 ω7c, C16:1 ω6c/C16:1 ω7c, C16:0 and C12:0 3-OH. The genomic DNA G+C content was determined to be 54.4 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolate belongs to the genus Halomonas in the family Halomonadaceae. The 16S rRNA gene sequence similarities between strain YIM M 13059 T and the type strains of members of the genus Halomonas were in the range 93.3–98.3 %. However, the levels of DNA–DNA relatedness values between YIM M 13059 and the type strains of the most closely related species, Halomonas zhangjiangensis, Halomonas variabilis, Halomonas neptunia, Halomonas boliviensis and Halomonas sulfadieris were 50.2 ± 0.68 %, 46.8 ± 1.9 %, 28.5 ± 0.74 %, 42.9 ± 0.55 % and 37.1 ± 0.68 %, respectively. Based on phylogenetic, chemotaxonomic and phenotypic data, the strain YIM M 13059T is proposed to represent a novel member of the genus Halomonas, with the name Halomonas nanhaiensis sp. nov. The type strain is YIM M 13059T (=JCM 18142T =CCTCC AB 2012911T).  相似文献   

2.
A moderately halophilic bacterium, designated strain 9-2T, was isolated from saline and alkaline soil collected in Lindian county, Heilongjiang province, China. The strain was observed to be strictly aerobic, Gram-negative, rod-shaped, oxidase-positive, catalase-positive and motile. It was found to require NaCl for growth and to grow at NaCl concentrations of 0.5–14 % (w/v) (optimum, 7–10 %, w/v), at temperatures of 10–45 °C (optimum 25–30 °C) and at pH 5.0–10.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 9-2T is a member of the genus Halomonas and is closely related to Halomonas desiderata DSM 9502T (96.68 %), Halomonas campaniensis DSM 1293T (96.46 %), Halomonas ventosae DSM 15911T (96.27 %) and Halomonas kenyensis DSM 17331T (96.27 %). The DNA–DNA hybridization value was 38.9 ± 0.66 % between the novel isolate 9-2T and H. desiderata DSM 9502T. The predominant ubiquinones were identified as Q9 (75.1 %) and Q8 (24.9 %). The major fatty acids were identified as C16:0 (22.0 %), Summed feature 8 (C18:1 ω6c/C18:1 ω7c, 19.6 %), Summed feature 3 (C16:1 ω6c/C16:1 ω7c, 12.6 %), C12:0 3-OH (12.0 %) and C10:0 (11.7 %). The DNA G+C content was determined to be 69.7 mol%. On the basis of the evidence presented in this study, strain 9-2T is considered to represent a novel species of the genus Halomonas, for which the name Halomonas heilongjiangensis sp. nov. is proposed. The type strain is 9-2T (=DSM 26881T = CGMCC 1.12467T).  相似文献   

3.
Two Gram-stain-negative, strictly aerobic, moderately halophilic, non-spore-forming and rod-shaped bacteria, designated M5N1S17T and M5N1S15, were isolated from saline soil in Baotou, China. A phylogenetic analysis based on 16S rRNA gene sequences showed that the two strains clustered closely with Halomonas montanilacus PYC7WT and shared 99.1 and 99.3% sequence similarities, respectively. The average nucleotide identity based on BLAST (ANIb) and MUMmer (ANIm) values of the two strains with each other were 95.5% and 96.7%, respectively, while the ANIb and ANIm values between the two strains and 15 closer Halomonas species were 74.8–91.3% and 84.1–92.6%, respectively. The major polar lipids of M5N1S17T are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and an unidentified phospholipid. The major polar lipids of M5N1S15 are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, two unidentified phospholipids, and an unidentified lipid. The predominant ubiquinone in the two strains is Q-9. The major fatty acids of the two strains are C18:1 ω6c and/or C18:1 ω7c, C16:0, and C16:1 ω7c and/or C16:1 ω6c. Based on phylogenetic, phenotypic, and physiological results, strains M5N1S17T and M5N1S15 should be identified as a novel species of the genus Halomonas, for which Halomonas alkalisoli sp. nov. is proposed. The type strain is M5N1S17T (= CGMCC 1.19023T = KCTC 92130T). The phylogenetic trees showed that Halomonas daqingensis CGMCC 1.6443T clustered tightly with Halomonas desiderata FB2T, and the two strains shared >98.0% of ANI values with each other. Therefore, we propose the reclassification of H. daqingensis Wu et al. 2008 as a later heterotypic synonym of H. desiderata Berendes et al. 1996.  相似文献   

4.
Strains pyc13T and ZGT13 were isolated from Lake Pengyan and Lake Zigetang on Tibetan Plateau, respectively. Both strains were Gram-negative, catalase- and oxidase-positive, aerobic, rod-shaped, nonmotile, and nonflagellated bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains pyc13T and ZGT13 belong to the genus Halomonas, with Halomonas alkalicola 56-L4-10aEnT as their closest neighbor, showing 97.4% 16S rRNA gene sequence similarity. The predominant respiratory quinone of both strains was Q-9, with Q-8 as a minor component. The major fatty acids of both strains were C18:1ω6c/C18:1ω7c, C16:1ω6c/C16:1ω7c, C16:0, and C12:0 3OH. The polar lipids of both strains consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, glycolipid, phospholipids of unknown structure containing glucosamine, and unidentified phospholipids. The DNA G + C content of pyc13T and ZGT13 were 62.6 and 63.4 mol%, respectively. The DNA-DNA hybridization values of strain pyc13T were 34, 41, 61, 35, and 35% with the reference strains H. alkalicola 56-L4-10aEnT, H. sediminicola CPS11T, H. mongoliensis Z-7009T, H. ventosae Al12T, and H. fontilapidosi 5CRT, respectively. Phenotypic, biochemical, genotypic, and DNA-DNA hybridization data showed that strains pyc13T and ZGT13 represent a new species within the genus Halomonas, for which the name H. tibetensis sp. nov. is proposed. The type strain is pyc13T (= CGMCC 1.15949T = KCTC 52660T).  相似文献   

5.
A slightly halophilic bacterium (strain NEAU-ST10-25T) was isolated from saline–alkaline soils in Zhaodong City, Heilongjiang Province, China. The strain is a Gram-negative, aerobic motile rod. It accumulates poly-β-hydroxyalkanoate and produces exopolysaccharide. It produces beige-yellow colonies. Growth occurs at NaCl concentrations (w/v) of 0–15 % (optimum 3 %), at temperatures of 4–60 °C (optimum 35 °C) and at pH 6–12 (optimum pH 9). Its G+C content is 53.8 mol%. Phylogenetic analyses based on the separate 16S rRNA gene and concatenation of the 16S rRNA, gyrB and rpoD genes indicate that it belongs to the genus Halomonas in the class Gammaproteobacteria. The most phylogenetically related species is Halomonas alkaliphila DSM 16354T, with which strain NEAU-ST10-25T showed 16S rRNA, gyrB and rpoD gene sequence similarities of 99.2, 82.3 and 88.2 %, respectively. The results of DNA–DNA hybridization assays showed 60.47 ± 0.69 % DNA relatedness between strain NEAU-ST10-25T and H. alkaliphila DSM 16354T, 42.43 ± 0.37 % between strain NEAU-ST10-25T and Halomonas venusta DSM 4743T and 30.62 ± 0.43 % between strain NEAU-ST10-25T and Halomonas hydrothermalis DSM 15725T. The major fatty acids are C18:1 ω7c (62.3 %), C16:0 (17.6 %), C16:1 ω7c/C16:1 ω6c (7.7 %), C14:0 (2.9 %), C12:0 3-OH (2.8 %), C10:0 (2.1 %) and C18:1 ω9c (1.6 %) and the predominant respiratory quinone is ubiquinone 9 (Q-9). The proposed name is Halomonas zhaodongensis, NEAU-ST10-25T (=CGMCC 1.12286T = DSM 25869T) being the type strain.  相似文献   

6.
A Gram-negative, aerobic, non-motile, dark brown-coloured and rod-shaped bacterial strain, designated G-MB1T, was isolated from a tidal flat sediment of the South Sea, South Korea. Strain G-MB1T was found to grow optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain G-MB1T fell within the clade comprising Thalassomonas species, clustering with the type strains of Thalassomonas agarivorans, Thalassomonas loyana, Thalassomonas ganghwensis and Thalassomonas agariperforans, with which it exhibited 16S rRNA gene sequence similarity values of 96.0–96.9 %. The 16S rRNA gene sequence similarity values between strain G-MB1T and the type strains of the other Thalassomonas species were 94.6–95.1 %. Strain G-MB1T was found to contain Q-8 as the predominant ubiquinone and C16:0, C17:1 ω8c, C16:1 ω9c, C12:0 3-OH and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) as the major fatty acids. The major polar lipids of strain G-MB1T were phosphatidylglycerol, phosphatidylethanolamine and one unidentified aminolipid. The DNA G+C content of strain G-MB1T was determined to be 42.4 mol%. Differential phenotypic properties, together with the phylogenetic distinctiveness, revealed that strain G-MB1T is separated from other Thalassomonas species. On the basis of the data presented, strain G-MB1T is considered to represent a novel species of the genus Thalassomonas, for which the name Thalassomonas fusca sp. nov. is proposed. The type strain is G-MB1T (=KCTC 32499T = NBRC 109830T).  相似文献   

7.
A Gram-negative, aerobic, motile rod strain, designated Ma-20T, was isolated from a pool of marine Spirulina platensis cultivation, Sanya, China, and was subjected to a polyphasic taxonomy study. Strain Ma-20T can grow in the presence of 0.5–11 % (w/v) NaCl, 10–43 °C and pH 6–10, and grew optimally at 30 °C, pH 7.5–9.0 in natural seawater medium. The polar lipids were composed of phosphatidylethanolamine, three unidentified phospholipids and three unidentified polar lipids. The respiratory quinone was ubiquinone 8 (Q-8) and the major fatty acids were C18:1ω6c/C18:1ω7c (summed feature 8, 32.84 %), C16:1ω6c/C16:1ω7c (summed feature 3, 30.76 %), C16:0 (13.54 %), C12:03-OH (4.63 %), and C12:0 (4.09 %). The DNA G+C content of strain Ma-20T was 58 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Ma-20T belonging to Gammaproteobacteria, it shared 88.46–91.55 and 89.21–91.26 % 16S rRNA gene sequence similarity to the type strains in genus Hahella and Marinobacter, respectively. In addition to the large 16S rRNA gene sequence difference, Ma-20T can also be distinguished from the reference type strains Hahella ganghwensis FR1050T and Marinobacter hydrocarbonoclasticus sp. 17T by several phenotypic characteristics and chemotaxonomic properties. On the basis of phenotypic, chemotaxonomic and phylogenetic properties, strain Ma-20T is suggested to represent a novel species of a new genus in Gammaproteobacteria, for which the name Nonhongiella spirulinensis gen. nov., sp. nov. is proposed. The type strain is Ma-20T (=KCTC 32221T=LMG 27470T).  相似文献   

8.
Two Gram-stain negative, moderately halophilic, aerobic, motile bacteria, designated strains YIM QH88T and YIM QH103, were isolated from the Qiaohou salt mine in Yunnan, southwest China. Cells of the strains were observed to be rod-shaped and produce creamy-coloured colonies. Growth of the two strains was observed at 10–45 °C (optimum 25–37 °C), at pH 6.0–10.0 (optimum 7.0–8.0), and in the presence of 0.5–20 % (w/v) NaCl (optimum 2–6 %). The two strains were found to contain summed feature 8 (C18:1 ω7c/ω6c), C19:0 cyclo ω8c and C16:0 as the major cellular fatty acids. The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unknown phospholipid. The G+C content of the genomic DNA of strains YIM QH88T and YIM QH103 were determined to be 64.6 and 64.2 mol%, respectively, and the predominant respiratory quinone detected was ubiquinone 9. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strains YIM QH88T and YIM QH103 formed a distinct lineage within the genus Halomonas and were most closely related to Halomonas pantelleriensis DSM 9661T with 97.3 and 97.5 % of 16S rRNA sequence similarity respectively. The DNA–DNA hybridization relatedness value for strains YIM QH88T and YIM QH103 was 95.2 ± 0.8 %. The levels of DNA–DNA relatedness between each of these two strains and the type strains of phylogenetically closely related Halomonas species were clearly below 70 %. On the basis of their phylogenetic analysis, DNA–DNA hybridization relatedness, phenotypic and chemotaxonomic characteristics, strains YIM QH88T and YIM QH103 should be classified as a novel species of the genus Halomonas, for which the name Halomonas qiaohouensis sp. nov. is proposed. The type strain is YIM QH88T (=DSM 26770T =CCTCC AB 2012965T).  相似文献   

9.
A Gram-negative, non-spore-forming, aerobic, motile and rod-shaped or ovoid bacterial strain, designated MA1-3T, was isolated from a sea squirt (Halocynthia roretzi) collected from the South sea in South Korea. Strain MA1-3T was found to grow optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain MA1-3T fell within the clade comprising Colwellia species, clustering coherently with the type strains of Colwellia aestuarii, Colwellia polaris and Colwellia chukchiensis, showing sequence similarity values of 97.2, 96.4 and 95.6 %, respectively. It exhibited 16S rRNA gene sequence similarity values of 93.9–96.1 % to the type strains of the other Colwellia species. Strain MA1-3T was found to contain Q-8 as the predominant ubiquinone and C16:1 ω7c and/or C16:1 ω6c, C16:0 and C16:1 ω9c as the major fatty acids. The DNA G+C content of strain MA1-3T was determined to be 39.1 mol% and its mean DNA–DNA relatedness value with the type strain of C. aestuarii was 13 ± 5.4 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that the novel strain is separated from other Colwellia species. On the basis of the data presented, strain MA1-3T is considered to represent a novel species of the genus Colwellia, for which the name Colwellia meonggei sp. nov. is proposed. The type strain is MA1-3T (=KCTC 32380T = CECT 8302T).  相似文献   

10.
A Gram-staining-negative, rod-shaped and motile with several polar flagellums bacterium, designated WM-3T, was isolated from a rice paddy soil in South China. Growth occurred with 0–3.0 % (w/v) NaCl (optimum 2.0 %), at pH 5.5–9.0 (optimum pH 7.0) and at 25–42 °C (optimum 30–37 °C) in liquid Reasoner’s 2A medium. Analysis of the 16S rRNA gene and gyrB gene sequences revealed that strain WM-3T was most closely related to the type strains of the species Pseudomonas linyingensis and Pseudomonas sagittaria. Its sequence similarities with P. linyingensis CGMCC 1.10701T and P. sagittaria JCM 18195T were 97.4 and 97.3 %, respectively, for 16S rRNA gene, and were 94.1 and 94.2 %, respectively, for gyrB gene. DNA–DNA hybridization between strain WM-3T and these two type strains showed relatedness of 35.6 and 30.9 %, respectively. G+C content of genomic DNA was 69.4 mol%. The whole-cell fatty acids mainly consisted of C16:0 (30.0 %), C16:1 ω6c and/or C16:1 ω7c (19.3 %) and C18:1 ω6c and/or C18:1 ω7c (16.3 %). The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain WM-3T belongs to genus Pseudomonas but represents a novel species, for which the name Pseudomonas oryzae sp. nov. is proposed. The type strain is WM-3T (=KCTC 32247T =CGMCC 1.12417T).  相似文献   

11.
A Gram-stain negative, aerobic, motile and rod-shaped bacterial strain, designated J-MY2T, was isolated from a tidal flat sediment of the South Sea, South Korea. Strain J-MY2T was found to grow optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain J-MY2T forms a cluster with the type strains of Simiduia species. Strain J-MY2T exhibited 16S rRNA gene sequence similarity values of 97.62–98.77 % to the type strains of four Simiduia species and of <92.95 % sequence similarity to the type strains of the other recognized species. Strain J-MY2T was found to contain Q-8 as the predominant ubiquinone and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, C18:1 ω7c and C17:1 ω8c as the major fatty acids. The major polar lipids of strain J-MY2T were identified as phosphatidylethanolamine, phosphatidylglycerol, three unidentified glycolipids and one unidentified lipid. The DNA G+C content of strain J-MY2T was determined to be 54.8 mol% and its mean DNA–DNA relatedness values with the type strains of the four Simiduia species were in the range 21–34 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain J-MY2T is separated from other Simiduia species. On the basis of the data presented, strain J-MY2T is considered to represent a novel species of the genus Simiduia, for which the name Simiduia aestuariiviva sp. nov. is proposed. The type strain is J-MY2T ( = KCTC 42073T = CECT 8571T).  相似文献   

12.
A taxonomic study was carried out on strain 22II-S10sT, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-negative, oxidase and catalase positive, rod shaped and motile by subpolar flagella. The isolate was capable of gelatine hydrolysis but unable to reduce nitrate to nitrite or degrade Tween 80 or aesculin. Growth was observed at salinities of 0.5–18 % (optimum, 2–12 %), at pH of 3–10 (optimum, 7) and at temperatures of 10–41 °C (optimum 28 °C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S10sT belongs to the genus Roseivivax, with highest sequence similarity to Roseivivax halodurans JCM 10272T (97.2 %), followed by Roseivivax isoporae LMG 25204T (97.0 %); other species of genus Roseivivax shared 95.2–96.7 % sequence similarity. The DNA–DNA hybridization estimate values between strain 22II-S10sT and the two type strains (R. halodurans JCM 10272T and R. isoporae LMG 25204T) were 22.00 and 21.40 %. The principal fatty acids were identified as Summed Feature 8 (C18:1 ω7c/ω6c) (67.4 %), C18:0 (7.2 %), C19:0 cyclo ω8c (7.1 %), C18:1 ω7c 11-methyl (6.8 %) and C16:0 (5.9 %). The respiratory quinone was determined to be Q-10 (100 %). Phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, a glycolipid and three phospholipids were present. The G+C content of the chromosomal DNA was determined to be 67.5 mol%. The combined genotypic and phenotypic data show that strain 22II-S10sT represents a novel species within the genus Roseivivax, for which the name Roseivivax atlanticus sp. nov. is proposed, with the type strain 22II-S10sT (= MCCC 1A09150T = LMG 27156T).  相似文献   

13.
A taxonomic study was carried out on strain 22II-S10r2T, which was isolated from the deep sea sediment of the Atlantic Ocean using oil-degrading enrichment. The bacterium was Gram-negative, oxidase positive and catalase negative, spherical in shape, and motile by polar flagella. Growth was observed at salinities of 0.5–7 % and at temperatures of 10–41 °C. The isolate was capable of aesculin hydrolysis, but unable to reduce nitrate to nitrite or degrade Tween 80 or gelatine. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S10r2T belonged to the family Ectothiorhodospiraceae, with highest sequence similarity to Thioalkalivibrio sulfidiphilus HL-EbGR7T (90.9 % similarity). The principal fatty acids were Sum In Feature 8 (C18:1 ω7c/ω6c (29.9 %), C18:1 ω9c (13.5 %), C16:1 ω5c (12.3 %), C12:03OH (6.8 %), C18:1 ω5c (5.7 %) and C16:0 (5.3 %). The G+C content of the chromosomal DNA was 60.7 mol%. The respiratory quinone was determined to be Q-7 (25 %) and Q-8 (75 %). Phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid, glycolipid, three phospholipids and lipid were present. The strain was aerobic, non-phototrophic and non-chemolithoautotrophic. The combined genotypic and phenotypic data show that strain 22II-S10r2T represents a novel species within a novel genus, for which the name Maricoccus atlantica gen. nov. sp. nov. is proposed, with the type strain 22II-S10r2T (=CGMCC NO.1.12317T = LMG 27155T = MCCC 1A09384T).  相似文献   

14.
Gram stain-negative and non-motile bacteria, designated as DY53T and DY43, were isolated from mountain soil in South Korea prior exposure with 5 kGy gamma radiation. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strains belonged to the family Cytophagaceae in the class Cytophagia. 16S rRNA gene sequence similarity of strains DY53T and DY43 was 100 %. The highest degrees of sequence similarities of strains DY53T and DY43 were found with Hymenobacter perfusus A1-12T (98.8 %), Hymenobacter rigui WPCB131T (98.5 %), H. yonginensis HMD1010T (97.9 %), H. xinjiangensis X2-1gT (96.6 %), and H. gelipurpurascens Txg1T (96.5 %). The DNA G+C content of the novel strains DY53T and DY43 were 59.5 mol%. Chemotaxonomic data revealed that strains possessed major fatty acids such as C15:0 iso, C15:0 anteiso, C16:1 ω5c, summed feature 3 (16:1 ω7c/ω6c), summed feature 4 (17:1 anteiso B/iso I) and C17:0 iso, and major polar lipid was phosphatidylethanolamine. The novel strains showed resistance to gamma radiation, with a D10 value (i.e., the dose required to reduce the bacterial population by tenfold) in excess of 5 kGy. Based on these data, strains DY53T and DY43 should be classified as representing a novel species, for which the name Hymenobacter swuensis sp. nov. is proposed, with the type strain DY53T (=KCTC 32018T = JCM 18582T) and DY43 (=KCTC 32010).  相似文献   

15.
A Gram-negative, aerobic, non-flagellated, non-gliding, rod-shaped bacterial strain, designated WR-R1YT, was isolated from soil at a field of reeds in South Korea. Strain WR-R1YT grew optimally at 30 °C, at pH 7.0–7.5 and in the absence of NaCl. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain WR-R1YT fell within the clade comprising Mucilaginibacter species, coherently clustering with the type strain of Mucilaginibacter composti, with which it exhibited the highest 16S rRNA gene sequence similarity value of 97.6 %. Sequence similarities to the type strains of the other Mucilaginibacter species and the other species used in the phylogenetic analysis were 93.1–96.9 % and <91.1 %, respectively. Strain WR-R1YT contained MK-7 as the predominant menaquinone and iso-C15:0, summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C16:0 and iso-C17:0 3-OH as the major fatty acids. The major polar lipids were phosphatidylethanolamine and one unidentified aminophospholipid. The DNA G+C content of strain WR-R1YT was 43.1 mol% and its mean DNA–DNA relatedness value with M. composti KACC 14956T was 17 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain WR-R1YT is separate from other Mucilaginibacter species. On the basis of the data presented, strain WR-R1YT represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter calamicampi sp. nov. is proposed. The type strain is WR-R1YT (= KCTC 32214T = CCUG 63418T).  相似文献   

16.
A Gram-stain negative, motile, rod-shaped bacterium, designated strain WM-2T, was isolated from a forest soil in Sihui City, South China, and characterized by means of a polyphasic approach. Growth occurred with 0–5 % (w/v) NaCl (optimum 0–1 %) and at pH 5.0–10.5 (optimum pH 8.5) and 4–40 °C (optimum 30 °C) in Luria–Bertani medium. Comparative 16S rRNA gene sequence analyses showed that strain WM-2T is a member of the genus Pseudomonas and most closely related to P. guguanensis, P. oleovorans subsp. lubricantis, P. toyotomiensis, P. alcaliphila and P. mendocina with 97.1–96.6 % sequence similarities. In terms of gyrB and rpoB gene sequences, strain WM-2T showed the highest similarity with the type strains of the species P. toyotomiensis and P. alcaliphila. The DNA–DNA relatedness values of strain WM-2T with P. guguanensis and P. oleovorans subsp. lubricantis was 48.7 and 37.2 %, respectively. Chemotaxonomic characteristics (the main ubiquinone Q-9, major fatty acids C18:1 ω7c/C18:1 ω6c, C16:0 and C16:1 ω7c/C16:1 ω6c and DNA G+C content 65.2 ± 0.7 mol%) were similar to those of members of the genus Pseudomonas. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminophospholipid, an unknown phospholipid and five unknown lipids. According to the results of polyphasic analyses, strain WM-2T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas sihuiensis sp. nov. is proposed. The type strain is WM-2T (=KCTC 32246T=CGMCC 1.12407T).  相似文献   

17.
A Gram-negative, aerobic, short rod-shaped and non-motile bacterium, designated SWA25T, was isolated from Chinese fermented fish sauce in Shantou, Guangdong Province, China. Strain SWA25T was moderately halophilic, formed colourless colonies and grew at 10–45 °C (optimum, 37 °C) and pH 4–9 (optimum, 6–7) in the presence of 0.5–22.5 % (w/v) NaCl (optimum, 3 %). The major cellular fatty acids (>10 %) were identified as C18:1 ω7C, C16:0, C16:1 ω7c, and C19:0 cyclo ω8c, and the predominant respiratory ubiquinone was Q-9. The genomic DNA G+C content was 61.3 ± 2.1 mol %. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SWA25T belonged to the genus Halomonas in the family Halomonadaceae. The closest relatives were Halomonas xianhensis A-1T (96.5 % 16S rRNA gene sequence similarity), H. lutea DSM 23508T (96.5 %) and H. muralis LMG 20969T (96.1 %). DNA–DNA hybridization assays showed 30.7 ± 2.6 % relatedness between strain SWA25T and H. xianhensis A-1T, and 39.4 ± 4.1 % between strain SWA25T and H. lutea DSM 23508T. On the basis of phenotypic, chemotaxonomic and phylogenetic features, strain SWA25T should be placed in the genus Halomonas as a representative of a novel species. The name Halomonas shantousis sp. nov. is proposed, with SWA25T(=CCTCC AB 2013151T = JCM 19368T) as the type strain.  相似文献   

18.
A taxonomic study was carried out on strain D104T, which was isolated from deep-sea subsurface sediment sample from the Arctic Ocean. The bacterium was found to be Gram-negative, oxidase negative and catalase weakly positive, rod shaped, motile by means of polar flagellum. The organism grows between 4 and 37 °C (optimum 25–28 °C) and 0.5–6 % NaCl (optimum 3 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain D104T belongs to the genus Marinomonas, with highest sequence similarities of 97.7 % to Marinomonas ushuaiensis DSM 15871T, followed by M. dokdonensis DSW10-10T (96.9 %), M. arenicola KMM 3893T (96.7 %), M. arctica 328T (96.6 %) and other 18 species of the genus Marinomonas (94.4–96.5 %). The average nucleotide identity and estimated DNA–DNA hybridization values between strain D104T and M. ushuaiensis DSM 15871T were 84.24 % and 20.80 ± 2.33 % respectively. The principal fatty acids were C16:0, sum in feature 3 (C16:1 ω7c/C16:1 ω6c), sum in feature 8 (C18:1 ω7c/C18:1 ω6c) and C12:1 3OH. The G + C content of the chromosomal DNA was determined to be 44.8 mol%. The respiratory quinone was found to be Q8 (100 %). Polar lipids include phosphatidylglycerol and phosphatidylethanolamine as major phospholipids and aminolipid and phospholipid as minor components. The results of the genotypic and phenotypic analyses indicate that strain D104T represents a novel species of the genus Marinomonas, for which the name Marinomonas profundimaris sp. nov. is proposed, with the type strain D104T (=MCCC 1A07573T = LMG 27696T).  相似文献   

19.
A Gram staining negative, rod-shaped, aerobic bacterial strain J5-3T with a single polar flagellum was isolated from coking wastewater collected from Shaoguan, Guangdong, China. It was motile and capable of optimal growth at pH 6–8, 30 °C, and 0–2 % (w/v) NaCl. Its predominant fatty acids were 11-methyl C18:1 ω7c (29.2 %), C16:0 (20.6 %), C19:0 cyclo ω8c (18.2 %), C18:0 (11.0 %), and C18:1 ω7c/C18:1 ω6c (10.9 %) when grown on trypticase soy agar. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids (GL1, GL2), and two unknown phospholipid (PL1, PL2). The predominant ubiquinone was Q-10, and the genome DNA G+C content was 61.7 mol %. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain J5-3T belonged to the family Hyphomicrobiaceae in Alphaproteobacteria. It shared the 16S rRNA gene sequence similarities of 93.8–96.1 % with the genus Devosia, 94.5–94.8 % with the genus Pelagibacterium, and <92.0 % with all the other type strains in family Hyphomicrobiaceae. It can be distinguished from the closest phylogenetic neighbors based on several phenotypic and genotypic features, including α-galactosidase activity, tetracycline susceptibility, major fatty acid composition, polar lipid profile, DNA gyrase B subunit (gyrB) gene sequence, and random-amplified polymorphic DNA profile. Therefore, we consider strain J5-3T to represent a novel species of a novel genus within the family Hyphomicrobiaceae, for which the name Paradevosia shaoguanensis gen. nov., sp. nov. is proposed. The type strain of Paradevosia shaoguanensis is J5-3T (=CGMCC 1.12430T =LMG 27409T).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号