首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We describe a comparative study of protein production from 96 Arabidopsis thaliana open reading frames (ORFs) by cell-based and cell-free protocols. Each target was carried through four pipeline protocols used by the Center for Eukaryotic Structural Genomics (CESG), one for the production of unlabeled protein to be used in crystallization trials and three for the production of 15N-labeled proteins to be analyzed by 1H-15N NMR correlation spectroscopy. Two of the protocols involved Escherichia coli cell-based and two involved wheat germ cell-free technology. The progress of each target through each of the protocols was followed with all failures and successes noted. Failures were of the following types: ORF not cloned, protein not expressed, low protein yield, no cleavage of fusion protein, insoluble protein, protein not purified, NMR sample too dilute. Those targets that reached the goal of analysis by 1H-15N NMR correlation spectroscopy were scored as HSQC+ (protein folded and suitable for NMR structural analysis), HSQC+/- (protein partially disordered or not in a single stable conformational state), HSQC- (protein unfolded, misfolded, or aggregated and thus unsuitable for NMR structural analysis). Targets were also scored as X- for failing to crystallize and X+ for successful crystallization. The results constitute a rich database for understanding differences between targets and protocols. In general, the wheat germ cell-free platform offers the advantage of greater genome coverage for NMR-based structural proteomics whereas the E. coli platform when successful yields more protein, as currently needed for crystallization trials for X-ray structure determination.  相似文献   

2.
High-throughput protein production systems have become an important issue, because protein production is one of the bottleneck steps in large-scale structural and functional analyses of proteins. We have developed a dialysis reactor and a fully automated system for protein production using the dialysis cell-free synthesis method, which we previously established to produce protein samples on a milligram scale in a high-throughput manner. The dialysis reactor was designed to be suitable for an automated system and has six dialysis cups attached to a flat dialysis membrane. The automated system is based on a Tecan Freedom EVO 200 workstation in a three-arm configuration, and is equipped with shaking incubators, a vacuum module, a robotic centrifuge, a plate heat sealer, and a custom-made tilting carrier for collection of reaction solutions from the flat-bottom cups with dialysis membranes. The consecutive process, from the dialysis cell-free protein synthesis to the partial purification by immobilized metal affinity chromatography on a 96-well filtration plate, was performed within ca. 14 h, including 8 h of cell-free protein synthesis. The proteins were eluted stepwise in a high concentration using EDTA by centrifugation, while the resin in the filtration plate was washed on the vacuum manifold. The system was validated to be able to simultaneously and automatically produce up to 96 proteins in yields of several milligrams with high well-to-well reliability, sufficient for structural and functional analyses of proteins. The protein samples produced by the automated system have been utilized for NMR screening to judge the protein foldedness and for structure determinations using heteronuclear multi-dimensional NMR spectroscopy. The automated high-throughput protein production system represents an important breakthrough in the structural and functional studies of proteins and has already contributed a massive amount of results in the structural genomics project at the RIKEN Structural Genomics/Proteomics Initiative (RSGI).  相似文献   

3.
4.
The Joint Center for Structural Genomics (JCSG) has emphasized automation and parallel processing approaches. Here, we describe automated methods used across the cloning process with results from JCSG projects. The protocols for PCR, restriction digests and ligations, as well as for gel electrophoresis and microtiter plate assays have all been automated. The system has the capacity to routinely process 384 clones a week. This throughput can adequately supply our expression and purification pipeline with expression-ready clones, including novel targets and truncations. The utility of our system is demonstrated by our results from three diverse projects. In summary, 94% of the PCR amplicons generated to date have been successfully cloned and verified by sequencing (83% of the total attempted targets). Our results demonstrate the capabilities of this robotic platform to provide an avenue to high-throughput cloning which requires little manpower and is rapid and cost-effective while providing insights for method optimization.  相似文献   

5.
One of the first key steps in structural genomics is high-throughput expression and rapid screening to select highly soluble proteins, the preferred candidates for crystal production. Here we describe the methodology used at the Berkeley Structural Genomics Center (BSGC) for automated parallel expression and small-scale purification of fusion proteins using a 96-well format. Our robotic method includes cell lysis, soluble fraction separation and purification with affinity resins. For detection of His-tagged proteins in the soluble fractions and after affinity resin elution, a dot-blot procedure with an anti-His-antibody is used. The expression level and molecular mass of recombinant proteins are checked by SDS-PAGE. With this approach, we are able to obtain beneficial information to be used for large-scale protein expression and purification.  相似文献   

6.
Automation of protein purification for structural genomics   总被引:4,自引:0,他引:4  
A critical issue in structural genomics, and in structural biology in general, is the availability of high-quality samples. The additional challenge in structural genomics is the need to produce high numbers of proteins with low sequence similarities and poorly characterized or unknown properties. 'Structural-biology-grade' proteins must be generated in a quantity and quality suitable for structure determination experiments using X-ray crystallography or nuclear magnetic resonance (NMR). The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. The purification procedure must yield a homogeneous protein and must be highly reproducible in order to supply milligram quantities of protein and/or its derivative containing marker atom(s). At the Midwest Center for Structural Genomics we have developed protocols for high-throughput protein purification. These protocols have been implemented on AKTA EXPLORER 3D and AKTA FPLC 3D workstations capable of performing multidimensional chromatography. The automated chromatography has been successfully applied to many soluble proteins of microbial origin. Various MCSG purification strategies, their implementation, and their success rates are discussed in this paper.  相似文献   

7.
We have applied high throughput methods for cloning and expression of more than 850 genes from the Bacillus subtilis genome. The process uses 96-well plates and is automated from the level of primer design to the detection of soluble protein by a tag detection screen. This process was applied to a set of cytoplasmic targets from Bacillus subtilis to produce clones expressing soluble protein for incorporation into the structure determination pipeline of the Midwest Center for Structural Genomics. We also evaluated the feasibility of these plate-based methods for domain-based cloning and expression of secretory proteins and putative soluble domains of membrane proteins. This approach shows promise for implementation in a high throughput format and could provide additional target resources for structure determination. The continued development of new technologies that can be implemented in an automated format will be essential for continued success in the structural genomic programs.  相似文献   

8.
The Center for Eukaryotic Structural Genomics (CESG) has established procedures for the purification of Arabidopsis proteins in a high-throughput mode. Recombinant proteins were fused with (His)(6)-MBP tags at their N-terminus and expressed in Escherichia coli. Using an automated AKTApurifier system, fusion proteins were initially purified by immobilized metal affinity chromatography (IMAC). After cleavage of (His)(6)-MBP tags by TEV protease, (His)(6)-MBP tags were separated from target proteins by a subtractive 2nd IMAC. As a part of quality assurance, all purified proteins were subjected to MALDI-TOF and ESI mass spectrometry to confirm target identity and integrity, and determine incorporation of seleno-methionine (SeMet) and (15)N and (13)C isotopes. The protocols have been used successfully to provide high quality proteins that are suitable for structural studies by X-ray crystallography and NMR.  相似文献   

9.
The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. "Structural biology-grade" proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.  相似文献   

10.
The Center for Eukaryotic Structural Genomics (CESG) produces and solves the structures of proteins from eukaryotes. We have developed and operate a pipeline to both solve structures and to test new methodologies. Both NMR and X-ray crystallography methods are used for structure solution. CESG chooses targets based on sequence dissimilarity to known structures, medical relevance, and nominations from members of the scientific community. Many times proteins qualify in more than one of these categories. Here we review some of the structures that have connections to human health and disease.  相似文献   

11.
The human protein production group at the Southeast Collaboratory for Structural Genomics is charged with producing human proteins for both X-ray crystallography and NMR structural studies. Eukaryotic, and human proteins in particular, are notoriously difficult to express in bacterial systems. For various reasons, T7-based expression often results in protein expressed in an insoluble form. Overcoming this requires either introduction of a step to screen expression conditions or inclusion of a troublesome refolding step during purification. Our laboratory uses a trc-based expression vector that addresses many of the difficulties of the commonly used T7-based expression systems. Proteins expressed under the trc promoter, a weak promoter compared to the strong T7 promoter, are produced in a soluble form and include necessary cofactors. The details of this system will be discussed.  相似文献   

12.
One major bottleneck in protein production in Escherichia coli for structural genomics projects is the formation of insoluble protein aggregates (inclusion bodies). The efficient refolding of proteins from inclusion bodies is becoming an important tool that can provide soluble native proteins for structural and functional studies. Here we report an on-column refolding method established at the Berkeley Structural Genomics Center (BSGC). Our method is a combination of an ‘artificial chaperone-assisted refolding’ method previously proposed and affinity chromatography to take advantage of a chromatographic step: less time-consuming, no filtration or concentration, with the additional benefit of protein purification. It can be easily automated and formatted for high-throughput process.  相似文献   

13.
As the global Structural Genomics projects have picked up pace, the number of structures annotated in the Protein Data Bank as hypothetical protein or unknown function has grown significantly. A major challenge now involves the development of computational methods to assign functions to these proteins accurately and automatically. As part of the Midwest Center for Structural Genomics (MCSG) we have developed a fully automated functional analysis server, ProFunc, which performs a battery of analyses on a submitted structure. The analyses combine a number of sequence-based and structure-based methods to identify functional clues. After the first stage of the Protein Structure Initiative (PSI), we review the success of the pipeline and the importance of structure-based function prediction. As a dataset, we have chosen all structures solved by the MCSG during the 5 years of the first PSI. Our analysis suggests that two of the structure-based methods are particularly successful and provide examples of local similarity that is difficult to identify using current sequence-based methods. No one method is successful in all cases, so, through the use of a number of complementary sequence and structural approaches, the ProFunc server increases the chances that at least one method will find a significant hit that can help elucidate function. Manual assessment of the results is a time-consuming process and subject to individual interpretation and human error. We present a method based on the Gene Ontology (GO) schema using GO-slims that can allow the automated assessment of hits with a success rate approaching that of expert manual assessment.  相似文献   

14.
15.
As a part of the Joint Center for Structural Genomics (JCSG) biological targets, the structures of soluble domains of membrane proteins from Thermotoga maritima were pursued. Here, we report the crystal structure of the soluble domain of TM1634, a putative membrane protein of 128 residues (15.1 kDa) and unknown function. The soluble domain of TM1634 is an alpha-helical dimer that contains a single tetratrico peptide repeat (TPR) motif in each monomer where each motif is similar to that found in Tom20. The overall fold, however, is unique and a DALI search does not identify similar folds beyond the 38-residue TPR motif. Two different putative ligand binding sites, in which PEG200 and Co(2+) were located, were identified using crystallography and NMR, respectively.  相似文献   

16.
Nowadays, in scientific fields such as Structural Biology or Vaccinology, there is an increasing need of fast, effective and reproducible gene cloning and expression processes. Consequently, the implementation of robotic platforms enabling the automation of protocols is becoming a pressing demand. The main goal of our study was to set up a robotic platform devoted to the high-throughput automation of the polymerase incomplete primer extension cloning method, and to evaluate its efficiency compared to that achieved manually, by selecting a set of bacterial genes that were processed either in the automated platform (330) or manually (94). Here we show that we successfully set up a platform able to complete, with high efficiency, a wide range of molecular biology and biochemical steps. 329 gene targets (99 %) were effectively amplified using the automated procedure and 286 (87 %) of these PCR products were successfully cloned in expression vectors, with cloning success rates being higher for the automated protocols respect to the manual procedure (93.6 and 74.5 %, respectively).  相似文献   

17.
The Center for Eukaryotic Structural Genomics (CESG), as part of the Protein Structure Initiative (PSI), has established a high-throughput structure determination pipeline focused on eukaryotic proteins. NMR spectroscopy is an integral part of this pipeline, both as a method for structure determinations and as a means for screening proteins for stable structure. Because computational approaches have estimated that many eukaryotic proteins are highly disordered, about 1 year into the project, CESG began to use an algorithm (the Predictor of Naturally Disordered Regions, PONDR to avoid proteins that were likely to be disordered. We report a retrospective analysis of the effect of this filtering on the yield of viable structure determination candidates. In addition, we have used our current database of results on 70 protein targets from Arabidopsis thaliana and 1 from Caenorhabditis elegans, which were labeled uniformly with nitrogen-15 and screened for disorder by NMR spectroscopy, to compare the original algorithm with 13 other approaches for predicting disorder from sequence. Our study indicates that the efficiency of structural proteomics of eukaryotes can be improved significantly by removing targets predicted to be disordered by an algorithm chosen to provide optimal performance.  相似文献   

18.
Dr. Janie Merkel is the director of Yale’s Chemical Genomics Screening Facility, a high-throughput screening laboratory that is part of the Yale University Center for Genomics and Proteomics. The Screening Facility connects Yale researchers with industry-quality robotic machinery and a diverse group of compound libraries, which have been used successfully to link therapeutic targets with potential therapies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号