首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cornerstone of proteomics resides in using traditional methods of protein chemistry, to extract and resolve complex mixtures, in concert with the powerful engines of mass spectrometry to decipher peptide and protein identities. The broad utility of proteomics technologies to map protein interactions, understand regulatory mechanisms and identify biomarkers associated with disease states and drug treatments necessitates a targeted biochemical approach tailored to the characteristics of the tissue, fluid or cellular extract being studied. The application of affinity methods in proteomic studies to focus on particular classes of molecules is being used with increasing frequency and comprises the subject of this review. An overview of successfully applied affinity methods is provided, along with speculation on the use of innovative approaches. Sample preparation and processing are critical for proteomics with affinity reagents, as only functional and active proteins can be isolated in most cases. Considerations for methods of sample preparation to optimize affinity capture and release are also discussed.  相似文献   

2.
As structural genomics and proteomics research has become popular, the importance of cell-free protein synthesis systems has been realized for high-throughput expression. Our group has established a high-throughput pipeline for protein sample preparation for structural genomics and proteomics by using cell-free protein synthesis. Among the many procedures for cell-free protein synthesis, the preparation of the cell extract is a crucial step to establish a highly efficient and reproducible workflow. In this article, we describe a detailed protocol for E. coli cell extract preparation for cell-free protein synthesis, which we have developed and routinely use. The cell extract prepared according to this protocol is used for many of our cell-free synthesis applications, including high-throughput protein expression using PCR-amplified templates and large-scale protein production for structure determinations.  相似文献   

3.
Post-translational modifications of proteins greatly increase protein complexity and dynamics, co-ordinating the intricate regulation of biological events. The global identification of post-translational modifications is a difficult task that is currently accelerated by advances in proteomics techniques. There has been significant development in sample preparation methods and mass spectrometry instrumentation. To reduce the complexity and to increase the amount of modified proteins available for analysis, proteins are usually subjected to prefractionation such as chromatographic purification and affinity enrichment. In this review, the post-translational modification studies in plants are summarized. The sample preparation strategies applied to each study are also described. These include affinity-based enrichment methods, immobilized metal affinity chromatography and immunoprecipitation used for phosphorylation and ubiquitination studies, respectively, and the phase partitioning approach for glycosylphosphatidylinositol modification studies.  相似文献   

4.
Serum protein profiling by MS is a promising method for early detection of disease. Important characteristics for serum protein profiling are preanalytical factors, analytical reproducibility and high throughput. Problems related to preanalytical factors can be overcome by using standardized and rigorous sample collection and sample handling protocols. The sensitivity of the MS analysis relies on the quality of the sample; consequently, the blood sample preparation step is crucial to obtain pure and concentrated samples and enrichment of the proteins and peptides of interest. This review focuses on the serum sample preparation step prior to protein profiling by MALDI MS analysis, with particular focus on various SPE methods. The application of SPE techniques with different chromatographic properties such as RP, ion exchange, or affinity binding to isolate specific subsets of molecules (subproteomes) is advantageous for increasing resolution and sensitivity in the subsequent MS analysis. In addition, several of the SPE sample preparation methods are simple and scalable and have proven easy to automate for higher reproducibility and throughput, which is important in a clinical proteomics setting.  相似文献   

5.
Detection technologies in proteome analysis   总被引:21,自引:0,他引:21  
Common strategies employed for general protein detection include organic dye, silver stain, radiolabeling, reverse stain, fluorescent stain, chemiluminescent stain and mass spectrometry-based approaches. Fluorescence-based protein detection methods have recently surpassed conventional technologies such as colloidal Coomassie blue and silver staining in terms of quantitative accuracy, detection sensitivity, and compatibility with modern downstream protein identification and characterization procedures, such as mass spectrometry. Additionally, specific detection methods suitable for revealing protein post-translational modifications have been devised over the years. These include methods for the detection of glycoproteins, phosphoproteins, proteolytic modifications, S-nitrosylation, arginine methylation and ADP-ribosylation. Methods for the detection of a range of reporter enzymes and epitope tags are now available as well, including those for visualizing beta-glucuronidase, beta-galactosidase, oligohistidine tags and green fluorescent protein. Fluorescence-based and mass spectrometry-based methodologies are just beginning to offer unparalleled new capabilities in the field of proteomics through the performance of multiplexed quantitative analysis. The primary objective of differential display proteomics is to increase the information content and throughput of proteomics studies through multiplexed analysis. Currently, three principal approaches to differential display proteomics are being actively pursued, difference gel electrophoresis (DIGE), multiplexed proteomics (MP) and isotope-coded affinity tagging (ICAT). New multiplexing capabilities should greatly enhance the applicability of the two-dimensional gel electrophoresis technique with respect to addressing fundamental questions related to proteome-wide changes in protein expression and post-translational modification.  相似文献   

6.
The emergence of MS-based proteomic platforms as a prominent technology utilized in biochemical and biomedical research has increased the need for high-quality MS measurements. To address this need, National Institute of Standards and Technology (NIST) reference material (RM) 8323 yeast protein extract is introduced as a proteomics quality control material for benchmarking the preanalytical and analytical performance of proteomics-based experimental workflows. RM 8323 yeast protein extract is based upon the well-characterized eukaryote Saccharomyces cerevisiae and can be utilized in the design and optimization of proteomics-based methodologies from sample preparation to data analysis. To demonstrate its utility as a proteomics quality control material, we coupled LC-MS/MS measurements of RM 8323 with the NIST MS Quality Control (MSQC) performance metrics to quantitatively assess the LC-MS/MS instrumentation parameters that influence measurement accuracy, repeatability, and reproducibility. Due to the complexity of the yeast proteome, we also demonstrate how NIST RM 8323, along with the NIST MSQC performance metrics, can be used in the evaluation and optimization of proteomics-based sample preparation methods.  相似文献   

7.
Plant tissues contain large amounts of secondary compounds that significantly interfere with protein extraction and 2DE analysis. Thus, sample preparation is a crucial step prior to 2DE in plant proteomics. This tutorial highlights the guidelines that need to be followed to perform an adequate total protein extraction before 2DE in plant proteomics. We briefly describe the history, development, and feature of major sample preparation methods for the 2DE analysis of plant tissues, that is, trichloroacetic acid/acetone precipitation and phenol extraction. We introduce the interfering compounds in plant tissues and the general guidelines for tissue disruption, protein precipitation and resolubilization. We describe in details the advantages, limitations, and application of the trichloroacetic acid/acetone precipitation and phenol extraction methods to enable the readers to select the appropriate method for a specific species, tissue, or cell type. The current applications of the sample preparation methods in plant proteomics in the literature are analyzed. A comparative proteomic analysis between male and female plants of Pistacia chinensis is used as an example to represent the sample preparation methodology in 2DE‐based proteomics. Finally, the current limitations and future development of these sample preparation methods are discussed. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP17).  相似文献   

8.
山黧豆叶片蛋白质双向电泳技术的建立   总被引:11,自引:1,他引:10  
以山黧豆叶片为材料,比较分析了蛋白质的不同提取方法,在此基础上着重于样品制备。对IPG胶条的选择,第一向等电聚焦和第二向SDS-聚丙烯酰胺凝胶电泳的电泳程序及参数、染色方法等相关技术进行了比较和条件优化。结果显示:采用TCA-丙酮沉淀法提取蛋白质,裂解液中加入Tris-base作为蛋白酶抑制剂,等电聚焦电泳时延长低电压的电泳时间(30V、12h,500V、1h,1000V、2h)以促进盐离子泳出的方法对山黧豆叶片蛋白质进行双向电泳,并用考马斯亮蓝和银染复合染色法进行凝胶染色,能够获得蛋白点清晰的双向电泳图谱,说明用优化后的方法建立起的山黧豆叶片蛋白质双向电泳技术,蛋白质样品制备质量好,电泳分辨率高,完全适合于进一步的蛋白质组学研究。  相似文献   

9.
10.
Proteomic technologies in modern biomedical science   总被引:8,自引:0,他引:8  
This review highlights modern technologies employed in proteomics. Methods of sample preparations are discussed with special emphasis on the requirements for preparation of biological material, which may seriously influence the results of proteomic studies. Methods of solubilization, electrophoresis, chromatographic protein separation, and visualization of protein spots in gels are described. Modern methods of mass spectrometry used in proteomic studies include combination of protein chips with mass spectrometry. The review also describes approaches of functional proteomics, i.e., interactomics, and also bioinformatic resources used in proteomics for image analysis of 2D-gel-electrophoresis and for identification of protein sequences by mass spectra.  相似文献   

11.
The deciphering of the relationship between function and exact chemical composition of a defined protein species in the context of the proteome is one of the major challenges in proteomics and molecular cell physiology. In the Special Issue of Amino Acids about the analysis of protein species current approaches are reviewed and new methods described focusing on the investigation of protein species. On the basis of the articles in this Special Issue it can be summarized that first important and promising steps towards the comprehensive analysis of protein species have been done. It is already possible to obtain full (100%) sequence coverage of proteins by mass spectrometry, if the amount of proteins available for their analysis allows their proteolytic degradation by more than one protease and the subsequent mass spectrometric analysis of the resulting peptides. Employing affinity chromatography helps to analyse proteins with defined post-translational modifications thus opening a targeted view on e.g. the phosphoproteome. In the future the aim to identify the exact chemical composition including not one but every posttranslational modification and complete sequence coverage on the protein species level should be achievable with further progress in sample preparation techniques, especially concerning separation techniques on the protein level, mass spectrometry and algorithms for mass spectrometric data processing. For determining the function of defined protein species a closer cooperation between cell biologists and proteomics experts is desirable.  相似文献   

12.
13.
植物膜蛋白质组学是当前植物科学研究的热点领域。本文概论了蛋白质组学在植物膜蛋白研究中的应用,包括双向电泳前膜蛋白样品的制备以及植物质膜、液泡膜和其他膜蛋白组分的蛋白质组学研究进展,并介绍了植物膜蛋白质组学相关的数据库,最后对其发展作了展望。  相似文献   

14.
With the completion of the human genome project (HUGO) during recent years, gene function, protein abundance and expression patterns in tissues and cell types have emerged as central areas for the scientific community. A mapped human proteome will extend the value of the genome sequence and large-scale efforts aiming at elucidating protein localization, abundance and function are invaluable for biomarker and drug discovery. This research area, termed proteomics, is more demanding than any genome sequencing effort and to perform this on a wide scale is a highly diverse task. Therefore, the proteomics field employs a range of methods to examine different aspects of proteomics including protein localization, protein-protein interactions, posttranslational modifications and alteration of protein composition (e.g. differential expression) in tissues and body fluids. Here, some of the most commonly used methods, including chromatographic separations together with mass spectrometry and a number of affinity proteomics concepts are discussed and exemplified.  相似文献   

15.
We present a method for rapid expression and isolation of recombinant proteins. Cell-free protein synthesis in the presence of affinity beads enables in situ isolation of translation products, which simplifies the procedures for the preparation of purified protein samples. In the present study, we have made an attempt to carry out in situ isolation of histidine-tagged proteins by using Ni-NTA magnetic agarose beads. The presence of Ni-NTA beads gave no drastic effects on the efficiency of protein synthesis and successfully captured the synthesized proteins. Purified proteins were obtained after subsequent washing and elution steps. In particular, most of the endogenous bead-binding proteins were removed by pre-treating S30 extract with affinity beads and the purity of the target proteins was enhanced up to 95%. The methods described here will provide a basis for fast and convenient preparation of purified proteins from multiple genetic sequences.  相似文献   

16.
The plasma proteome has proven to be one of the most challenging proteomes to profile using currently available proteomics technologies. A plethora of methodologies have been used to profile human plasma in order to discover potential biomarkers for disease and for therapy optimization. Affinity‐based prefractionation coupled to MS has been shown to be one of the most successful ways to dig deeper into the plasma proteome. Depletion of high abundant plasma proteins is becoming an initial method of choice in any plasma profiling project. However, several other affinity‐based enrichment methods have been published in recent years. Here we review both protein and peptide affinity prefractionation methods coupled with MS‐based proteomics. Analysis of the proportion of cellular and extracellular annotated proteins of publicly available MS plasma proteomics data is performed to estimate the analytical depth of various prefractionation methods.  相似文献   

17.
蛋白质相互作用研究的新技术与新方法   总被引:2,自引:0,他引:2  
目前,蛋白质相互作用已成为蛋白质组学研究的热点. 新方法的建立及对已有技术的改进标志着蛋白质相互作用研究的不断发展和完善.在技术改进方面,本文介绍了弥补酵母双杂交的蛋白定位受限等缺陷的细菌双杂交系统;根据目标蛋白特性设计和修饰TAP标签来满足复合体研究要求的串联亲和纯化技术,以及在双分子荧光互补基础上发展的动态检测多个蛋白质间瞬时、弱相互作用的多分子荧光互补技术.还综述了近两年建立的新方法:与免疫共沉淀相比,寡沉淀技术直接研究具有活性的蛋白质复合体;减量式定量免疫沉淀方法排除了蛋白质复合体中非特异性相互作用的干扰;原位操作的多表位-配基绘图法避免了样品间差异的影响,以及利用多点吸附和交联加固研究弱蛋白质相互作用的固相蛋白质组学方法.  相似文献   

18.
Wang YY  Cheng P  Chan DW 《Proteomics》2003,3(3):243-248
Although it is possible to identify new proteins from crude cell extracts using proteomics technology, it is often difficult to elucidate low-abundant biomarkers in the presence of a large amount of high-abundant proteins in serum. We have developed a simple and rapid method using an affinity spin tube filter to remove high-abundant common proteins and enrich the low-abundant biomarkers. The affinity spin tube filter contains protein G, coupled with antibodies against either high-abundant proteins or specific proteins of interest. After incubating with serum, the flow-through or the elute was collected and analyzed by two-dimensional gel electrophoresis. By using this affinity spin tube filter, the possibilities of identifying new biomarkers are shown. This technique could be used for large-scale sample preparation for high-throughput proteomic analysis.  相似文献   

19.
It has been proved that the progress of proteomics is mostly determined by the development of advanced and sensitive protein separation technologies. Immobilized metal affinity chromatography (IMAC) is a powerful protein fractionation method used to enrich metal-associated proteins and peptides. In proteomics, IMAC has been widely employed as a prefractionation method to increase the resolution in protein separation. The combination of IMAC with other protein analytical technologies has been successfully utilized to characterize metalloproteome and post-translational modifications. In the near future, newly developed IMAC integrated with other proteomic methods will greatly contribute to the revolution of expression, cell-mapping and structural proteomics.  相似文献   

20.
It has been proved that the progress of proteomics is mostly determined by the development of advanced and sensitive protein separation technologies. Immobilized metal affinity chromatography (IMAC) is a powerful protein fractionation method used to enrich metal-associated proteins and peptides. In proteomics, IMAC has been widely employed as a prefractionation method to increase the resolution in protein separation. The combination of IMAC with other protein analytical technologies has been successfully utilized to characterize metalloproteome and post-translational modifications. In the near future, newly developed IMAC integrated with other proteomic methods will greatly contribute to the revolution of expression, cell-mapping and structural proteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号