首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenovirus DNA polymerase (Ad pol) is a eukaryotic-type DNA polymerase involved in the catalysis of protein-primed initiation as well as DNA polymerization. The functional significance of the (I/Y)XGG motif, highly conserved among eukaryotic-type DNA polymerases, was analyzed in Ad pol by site-directed mutagenesis of four conserved amino acids. All mutant polymerases could bind primer-template DNA efficiently but were impaired in binding duplex DNA. Three mutant polymerases required higher nucleotide concentrations for effective polymerization and showed higher exonuclease activity on double-stranded DNA. These observations suggest a local destabilization of DNA substrate at the polymerase active site. In agreement with this, the mutant polymerases showed reduced initiation activity and increased K(m)(app) for the initiating nucleotide, dCMP. Interestingly, one mutant polymerase, while capable of elongating on the primer-template DNA, failed to elongate after protein priming. Further investigation of this mutant polymerase showed that polymerization activity decreased after each polymerization step and ceased completely after formation of the precursor terminal protein-trinucleotide (pTP-CAT) initiation intermediate. Our results suggest that residues in the conserved motif (I/Y)XGG in Ad pol are involved in binding the template strand in the polymerase active site and play an important role in the transition from initiation to elongation.  相似文献   

2.
In DNA polymerases from families A and B in the closed conformation, several positively charged residues, located in pre-motif B and motif B, have been shown to interact with the phosphate groups of the incoming nucleotide at the polymerisation active site: the invariant Lys of motif B and the nearly invariant Lys of pre-motif B (family B) correspond to a His in family A DNA polymerases. In phi29 DNA polymerase, belonging to the family B DNA polymerases able to start replication by protein-priming, the corresponding residues, Lys383 and Lys371, have been shown to be dNTP-ligands. Since in several DNA polymerases a third residue has been involved in dNTP binding, we have addressed here the question if in the DNA polymerases of the protein-primed subfamily, and especially in phi29 DNA polymerase, there are more than these two residues involved in nucleotide binding. By site-directed mutagenesis in phi29 DNA polymerase the functional role of the remaining two conserved positively charged amino acid residues of pre-motif B and motif B (besides Lys371 and Lys383) has been studied. The results indicate that residue Lys379 of motif B is also involved in dNTP binding, possibly through interaction with the triphosphate moiety of the incoming nucleotide, since the affinity for nucleotides of mutant DNA polymerase K379T was reduced in DNA and TP-primed reactions. On the other hand, we propose that, when the terminal protein (TP) is present at the polymerisation active site, residue Lys366 of pre-motif B is involved in stabilising the incoming nucleotide in an appropriate position for efficient TP-deoxynucleotidylation. Although mutant DNA polymerase K366T showed a wild-type like phenotype in DNA-primed polymerisation in the presence of DNA as template, in TP-primed reactions as initiation and transition it was impaired, especially in the presence of the phi29 DBP, protein p6.  相似文献   

3.
Replicative DNA polymerases achieve insertion fidelity by geometric selection of a complementary nucleotide followed by induced fit: movement of the fingers subdomain toward the active site to enclose the incoming and templating nucleotides generating a binding pocket for the nascent base pair. Several residues of motif B of DNA polymerases from families A and B, localized in the fingers subdomain, have been described to be involved in template/primer binding and dNTP selection. Here we complete the analysis of this motif, which has the consensus "KLX2NSXYG" in DNA polymerases from family B, characterized by mutational analysis of conserved leucine, Leu384 of phi 29 DNA polymerase. Mutation of Leu384 into Arg resulted in a phi 29 DNA polymerase with reduced nucleotide insertion fidelity during DNA-primed polymerization and protein-primed initiation reactions. However, the mutation did not alter the intrinsic affinity for the different dNTPs, as shown in the template-independent terminal protein-deoxynucleotidylation reaction. We conclude that Leu384 of phi 29 DNA polymerase plays an important role in positioning the templating nucleotide at the polymerization active site and in controlling nucleotide insertion fidelity. This agrees with the localization of the corresponding residue in the closed ternary complexes of family A and family B DNA polymerases, contributing to form the binding pocket for the nascent base pair. As an additional effect, mutant polymerase L384R was strongly reduced in DNA binding, resulting in reduced processivity during polymerization.  相似文献   

4.
Phage Φ29 encodes a DNA-dependent DNA polymerase belonging to the eukaryotic-type (family B) subgroup of DNA polymerases that use a protein as the primer for initiation of DNA synthesis. In one of the most important motifs present in the 3′→5′ exonucleolytic domain of proofreading DNA polymerases, the ExoII motif, Φ29 DNA polymerase contains three amino acid residues, Y59, H61 and F69, which are highly conserved among most proofreading DNA polymerases. These residues have recently been shown to be involved in proper stabilization of the primer terminus at the 3′→5′ exonuclease active site. Here we investigate by means of site-directed mutagenesis the role of these three residues in reactions that are specific for DNA polymerases utilizing a protein-primed DNA replication mechanism. Mutations introduced at residues Y59, H61 and F69 severely affected the protein-primed replication capacity of Φ29 DNA polymerase. For four of the mutants, namely Y59L, H61L, H61R and F69S, interaction with the terminal protein was affected, leading to few initiation and transition products. These findings, together with the specific conservation of Y59, H61 and F69 among DNA polymerases belonging to the protein-primed subgroup, strongly suggest a functional role of these amino acid residues in the DNA polymerase–terminal protein interaction.  相似文献   

5.
The thumb subdomain, located in various family B DNA polymerases in the C-terminal region, has been shown in their crystal structures to move upon binding of DNA, changing its conformation to nearly completely wrap around the DNA. It has therefore been involved in DNA binding. In agreement with this, partial proteolysis studies of 29 DNA polymerase have shown that the accessibility of the cleavage sites located in their C-terminal region is reduced in the presence of DNA or terminal protein (TP), indicating that a conformational change occurs in this region upon substrate binding and suggesting that this region might be involved in DNA and TP binding. Therefore, we have studied the role of the C-terminus of 29 DNA polymerase by deletion of the last 13 residues of this enzyme. This fragment includes a previously defined region conserved in family B DNA polymerases. The resulting DNA polymerase Δ13 was strongly affected in DNA binding, resulting in a distributive replication activity. Additionally, the capacity of the truncated polymerase to interact with TP was strongly reduced and its initiation activity was very low. On the other hand, its nucleotide binding affinity and its fidelity were not affected. We propose that the C-terminal 13 amino acids of 29 DNA polymerase are involved in DNA binding and in a stable interaction with the initiator protein TP, playing an important role in the intrinsic processivity of this enzyme during polymerization.  相似文献   

6.
A multiple sequence alignment of eukaryotic-type DNA polymerases led to the identification of two regions of amino acid residues that are only present in the group of DNA polymerases that make use of terminal proteins. (TPs) as primers to initiate DNA replication of linear genomes. These amino acid regions (named terminal region (TPR protein-1 and TPR-2) are inserted between the generally conserved motifs Dx(2)SLYP and Kx(3)NSxYG (TPR-1) and motifs Kx(3)NSxYG and YxDTDS (TPR-2) of the eukaryotic-type family of DNA polymerases. We carried out site-directed mutagenesis in two of the most conserved residues of phi29 DNA polymerase TPR-1 to study the possible role of this specific region. Two mutant DNA polymerases, in conserved residues AsP332 and Leu342, were purified and subjected to a detailed biochemical analysis of their enzymatic activities. Both mutant DNA polymerases were essentially normal when assayed for synthetic activities in DNA-primed reactions. However, mutant D332Y was drastically affected in phi29 TP-DNA replication as a consequence of a large reduction in the catalytic efficiency of the protein-primed reactions. The molecular basis of this defect is a non-functional interaction with TP that strongly reduces the activity of the DNA polymerase/TP heterodimer.  相似文献   

7.
Alignment of the protein sequence of DNA-dependent DNA polymerases has allowed the definition of a new motif, lying adjacent to motif B in the direction of the N-terminus and therefore named pre-motif B. Both motifs are located in the fingers subdomain, shown to rotate towards the active site to form a dNTP-binding pocket in several DNA polymerases in which a closed ternary complex pol:DNA:dNTP has been solved. The functional significance of pre-motif B has been studied by site-directed mutagenesis of 29 DNA polymerase. The affinity for nucleotides of 29 DNA polymerase mutant residues Ile364 and Lys371 was strongly affected in DNA- and terminal protein-primed reactions. Additionally, mutations in Ile364 affected the DNA-binding capacity of 29 DNA polymerase. The results suggest that Lys371 of 29 DNA polymerase, highly conserved among families A and B, interacts with the phosphate groups of the incoming nucleotide. On the other hand, the role of residue Ile364 seems to be structural, being important for both DNA and dNTP binding. Pre-motif B must therefore play an important role in binding the incoming nucleotide. Interestingly, the roles of Lys371 and Ile364 were also shown to be important in reactions without template, suggesting that 29 DNA polymerase can achieve the closed conformation in the absence of a DNA template.  相似文献   

8.
Structural basis for substrate selection by t7 RNA polymerase   总被引:2,自引:0,他引:2  
  相似文献   

9.
Phi 29 DNA polymerase shares with other alpha-like DNA polymerases several regions of amino acid similarity. Among them, the two conserved regions characterized by the amino acid motifs "D-NSLYP" and "K--NS(L/V)YG," regions 1 and 2a, respectively, according to Blanco et al. (Blanco, L., Bernad, A., Blasco, M. A. and Salas, M. (1991) Gene (Amst.) 100, 27-38) have been proposed to be part of the polymerization active site of alpha-like DNA polymerases. One phi 29 DNA polymerase mutant in residue Tyr254, located in conserved region 1, and two mutants in residue Tyr390, located in conserved region 2a, have been characterized. The three phi 29 DNA polymerase mutant proteins were affected in polymerization when Mg(2+)-dNTPs were used as substrate. However, when the substrate was Mn(2+)-dNTP, mutants behaved as the wild-type phi 29 DNA polymerase. Mutant Tyr254 to Phe (Y254F) was strongly affected in the protein-primed initiation step of phi 29 DNA replication showing a decreased affinity for Me(2+)-dATP, the initiating nucleotide. Furthermore, the analysis of the template-independent deoxynucleotidylation of the TP by Y254F mutant polymerase is consistent with a change in the relative affinity for dNTPs. On the other hand, mutants Y390F and Y390S were found to be hypersensitive to the dNTP analogs 2-(p-n-butylanilino)dATP and N2-(p-n-butyl-phenyl)dGTP. The results obtained indicate that residues Tyr254 and Tyr390 are involved, directly or indirectly, in Me(2+)-dNTP binding.  相似文献   

10.
A Bernad  L Blanco  J M Lázaro  G Martín  M Salas 《Cell》1989,59(1):219-228
The 3'----5' exonuclease active site of E. coli DNA polymerase I is predicted to be conserved for both prokaryotic and eukaryotic DNA polymerases based on amino acid sequence homology. Three amino acid regions containing the critical residues in the E. coli DNA polymerase I involved in metal binding, single-stranded DNA binding, and catalysis of the exonuclease reaction are located in the amino-terminal half and in the same linear arrangement in several prokaryotic and eukaryotic DNA polymerases. Site-directed mutagenesis at the predicted exonuclease active site of the phi 29 DNA polymerase, a model enzyme for prokaryotic and eukaryotic alpha-like DNA polymerases, specifically inactivated the 3'----5' exonuclease activity of the enzyme. These results reflect a high evolutionary conservation of this catalytic domain. Based on structural and functional data, a modular organization of enzymatic activities in prokaryotic and eukaryotic DNA polymerases is also proposed.  相似文献   

11.
To achieve accurate DNA synthesis, DNA polymerases must rapidly sample and discriminate against incorrect nucleotides. Here we report the crystal structure of a high fidelity DNA polymerase I bound to DNA primer-template caught in the act of binding a mismatched (dG:dTTP) nucleoside triphosphate. The polymerase adopts a conformation in between the previously established "open" and "closed" states. In this "ajar" conformation, the template base has moved into the insertion site but misaligns an incorrect nucleotide relative to the primer terminus. The displacement of a conserved active site tyrosine in the insertion site by the template base is accommodated by a distinctive kink in the polymerase O helix, resulting in a partially open ternary complex. We suggest that the ajar conformation allows the template to probe incoming nucleotides for complementarity before closure of the enzyme around the substrate. Based on solution fluorescence, kinetics, and crystallographic analyses of wild-type and mutant polymerases reported here, we present a three-state reaction pathway in which nucleotides either pass through this intermediate conformation to the closed conformation and catalysis or are misaligned within the intermediate, leading to destabilization of the closed conformation.  相似文献   

12.
Proofreading DNA polymerases share common short peptide motifs that bind Mg(2+) in the exonuclease active center; however, hydrolysis rates are not the same for all of the enzymes, which indicates that there are functional and likely structural differences outside of the conserved residues. Since structural information is available for only a few proofreading DNA polymerases, we developed a genetic selection method to identify mutant alleles of the POL3 gene in Saccharomyces cerevisiae, which encode DNA polymerase delta mutants that replicate DNA with reduced fidelity. The selection procedure is based on genetic methods used to identify "mutator" DNA polymerases in bacteriophage T4. New yeast DNA polymerase delta mutants were identified, but some mutants expected from studies of the phage T4 DNA polymerase were not detected. This would indicate that there may be important differences in the proofreading pathways catalyzed by the two DNA polymerases.  相似文献   

13.
Computer analysis of DNA polymerase protein sequences revealed previously unidentified conserved domains that belong to two distinct superfamilies of phosphoesterases. The alpha subunits of bacterial DNA polymerase III and two distinct family X DNA polymerases are shown to contain an N-terminal domain that defines a novel enzymatic superfamily, designated PHP, after polymerase and histidinol phosphatase. The predicted catalytic site of the PHP superfamily consists of four motifs containing conserved histidine residues that are likely to be involved in metal-dependent catalysis of phosphoester bond hydrolysis. The PHP domain is highly conserved in all bacterial polymerase III alpha subunits, but in proteobacteria and mycoplasmas, the conserved motifs are distorted, suggesting a loss of the enzymatic activity. Another conserved domain, found in the small subunits of archaeal DNA polymerase II and eukaryotic DNA polymerases alpha and delta, is shown to belong to the superfamily of calcineurin-like phospho-esterases, which unites a variety of phosphatases and nucleases. The conserved motifs required for phospho-esterase activity are intact in the archaeal DNA polymerase subunits, but are disrupted in their eukaryotic orthologs. A hypothesis is proposed that bacterial and archaeal replicative DNA polymerases possess intrinsic phosphatase activity that hydrolyzes the pyrophosphate released during nucleotide polymerization. As proposed previously, pyrophosphate hydrolysis may be necessary to drive the polymerization reaction forward. The phosphoesterase domains with disrupted catalytic motifs may assume an allosteric, regulatory function and/or bind other subunits of DNA polymerase holoenzymes. In these cases, the pyrophosphate may be hydrolyzed by a stand-alone phosphatase, and candidates for such a role were identified among bacterial PHP superfamily members.  相似文献   

14.
Structure-based protein sequence alignments of family B DNA polymerases revealed a conserved motif that is formed from interacting residues between loops from the N-terminal and palm domains and between the N-terminal loop and a conserved proline residue. The importance of the motif for function of the bacteriophage T4 DNA polymerase was revealed by suppressor analysis. T4 DNA polymerases that form weak replicating complexes cannot replicate DNA when the dGTP pool is reduced. The conditional lethality provides the means to identify amino acid substitutions that restore replication activity under low-dGTP conditions either by correcting the defect produced by the first amino acid substitution or by generally increasing the stability of polymerase complexes; the second type are global suppressors that can effectively counter the reduced stability caused by a variety of amino acid substitutions. Some amino acid substitutions that increase the stability of polymerase complexes produce a new phenotype—sensitivity to the antiviral drug phosphonoacetic acid. Amino acid substitutions that confer decreased ability to replicate DNA under low-dGTP conditions or drug sensitivity were identified in the new motif, which suggests that the motif functions in regulating the stability of polymerase complexes. Additional suppressor analyses revealed an apparent network of interactions that link the new motif to the fingers domain and to two patches of conserved residues that bind DNA. The collection of mutant T4 DNA polymerases provides a foundation for future biochemical studies to determine how DNA polymerases remain stably associated with DNA while waiting for the next available dNTP, how DNA polymerases translocate, and the biochemical basis for sensitivity to antiviral drugs.  相似文献   

15.
Bacteriophage phi29 encodes a DNA-dependent DNA polymerase belonging to the eukaryotic-type (family B) subgroup of DNA polymerases that use a protein as primer for initiation of DNA replication. By multiple sequence alignments of DNA polymerases from such a family, we have been able to identify two amino acid residues specifically conserved in the protein-priming subgroup of DNA polymerases, a phenylalanine contained in the (S/T)Lx(2)h motif, and a glutamate belonging to the Exo III motif. Here, we have studied the functional role of these residues in reactions that are specific for DNA polymerases that use a protein-primed DNA replication mechanism, by site-directed mutagenesis in the corresponding amino acid residues, Phe128 and Glu161 of phi29 DNA polymerase. Mutations introduced at residue Phe128 severely impaired the protein-primed replication capacity of the polymerase, being the interaction with the terminal protein (TP) moderately (mutant F128A) or severely (mutant F128Y) diminished. As a consequence, very few initiation products were obtained, and essentially no transition products were detected. Interestingly, phi29 DNA polymerase mutant F128Y showed a decreased binding affinity for short template DNA molecules. These results, together with the high degree of conservation of Phe128 residue among protein-primed DNA polymerases, suggest a functional role for this amino acid residue in making contacts with the TP during the first steps of genome replication and with DNA in the further replication steps.  相似文献   

16.
By multiple sequence alignments of DNA polymerases from the eukaryotic-type (family B) subgroup of protein-primed DNA polymerases we have identified five positively charged amino acids, specifically conserved, located N-terminally to the (S/T)Lx(2)h motif. Here, we have studied, by site-directed mutagenesis, the functional role of phi29 DNA polymerase residues Arg96, Lys110, Lys112, Arg113 and Lys114 in specific reactions dependent on a protein-priming event. Mutations introduced at residues Arg96, Arg113 and Lys114 and to a lower extent Lys110 and Lys112, showed a defective protein-primed initiation step. Analysis of the interaction with double-stranded DNA and terminal protein (TP) displayed by mutant derivatives R96A, K110A, K112A, R113A and K114A allows us to conclude that phi29 DNA polymerase residue Arg96 is an important DNA/TP-ligand residue, essential to form stable DNA polymerase/DNA(TP) complexes, while residues Lys110, Lys112 and Arg113 could be playing a role in establishing contacts with the TP-DNA template during the first step of DNA replication. The importance of residue Lys114 to make a functionally active DNA polymerase/TP complex is also discussed. These results, together with the high degree of conservation of those residues among protein-primed DNA polymerases, strongly suggest a functional role of those amino acids in establishing the appropriate interactions with DNA polymerase substrates, DNA and TP, to successfully accomplish the first steps of TP-DNA replication.  相似文献   

17.
RNA-specific ribonucleotidyl transferases   总被引:3,自引:0,他引:3       下载免费PDF全文
Martin G  Keller W 《RNA (New York, N.Y.)》2007,13(11):1834-1849
RNA-specific nucleotidyl transferases (rNTrs) are a diverse family of template-independent polymerases that add ribonucleotides to the 3'-ends of RNA molecules. All rNTrs share a related active-site architecture first described for DNA polymerase beta and a catalytic mechanism conserved among DNA and RNA polymerases. The best known examples are the nuclear poly(A) polymerases involved in the 3'-end processing of eukaryotic messenger RNA precursors and the ubiquitous CCA-adding enzymes that complete the 3'-ends of tRNA molecules. In recent years, a growing number of new enzymes have been added to the list that now includes the "noncanonical" poly(A) polymerases involved in RNA quality control or in the readenylation of dormant messenger RNAs in the cytoplasm. Other members of the group are terminal uridylyl transferases adding single or multiple UMP residues in RNA-editing reactions or upon the maturation of small RNAs and poly(U) polymerases, the substrates of which are still not known. 2'-5'Oligo(A) synthetases differ from the other rNTrs by synthesizing oligonucleotides with 2'-5'-phosphodiester bonds de novo.  相似文献   

18.
Although DNA polymerase eta (Pol eta) and other Y family polymerases differ in sequence and function from classical DNA polymerases, they all share a similar right-handed architecture with the palm, fingers, and thumb domains. Here, we examine the role in Saccharomyces cerevisiae Pol eta of three conserved residues, tyrosine 64, arginine 67, and lysine 279, which come into close contact with the triphosphate moiety of the incoming nucleotide, in nucleotide incorporation. We find that mutational alteration of these residues reduces the efficiency of correct nucleotide incorporation very considerably. The high degree of conservation of these residues among the various Y family DNA polymerases suggests that these residues are also crucial for nucleotide incorporation in the other members of the family. Furthermore, we note that tyrosine 64 and arginine 67 are functionally equivalent to the deoxynucleotide triphosphate binding residues arginine 518 and histidine 506 in T7 DNA polymerase, respectively.  相似文献   

19.
Takemura M 《Bio Systems》2002,65(2-3):139-145
Several molecular forms of DNA polymerases have been identified in eukaryotic cells. Although three DNA polymerases alpha, delta, and epsilon, have been well studied and indicated to be involved in nuclear DNA replication process, it remains unclear how this hetero-polymerase system might have arisen. Here I wish to consider its past and future, viewed in the context of molecular evolution. Comparative analysis has revealed some nucleotides and/or amino acids to be conserved in DNA polymerase delta, in polymerase domains III and IV, which have disappeared in DNA polymerase alpha. Furthermore, the codon usage for serine residues in conserved domains of DNA polymerase alpha varies and is not as conservative as for DNA polymerase delta. Recently and in the present study, I have reported that DNA polymerase delta could substitute for the function of DNA polymerase alpha in vitro, and proposed the hypothesis that eukaryotic DNA polymerase alpha arose due to symbiotic contacts. This 'exogenous' polymerase would be expected to be excluded from the eukaryotic DNA replication system, and my analysis in the present study suggests it is about to degenerate.  相似文献   

20.
Eucaryotic, viral, and bacteriophage DNA polymerases of the alpha-like family share blocks of sequence similarity, the most conserved of which has been designated region I. Region I includes a YGDTDS motif that is almost invariant within the alpha-like family and that is similar to a motif conserved among RNA-directed polymerases and also includes adjacent amino acids that are more moderately conserved. To study the function of these conserved amino acids in vivo, site-specific mutagenesis was used to generate herpes simplex virus region I mutants. A recombinant virus constructed to contain a mutation within the nearly invariant YGDTDS motif was severely impaired for growth on Vero cells which do not contain a viral polymerase gene. However, three recombinants constructed to contain mutations altering more moderately conserved residues grew on Vero cells and exhibited altered sensitivities to nucleoside and PPi analogs and to aphidicolin. Marker rescue and DNA sequencing of one such recombinant demonstrated that the region I alteration confers the altered drug sensitivity phenotype. These results indicate that this region has an essential role in polymerase function in vivo and is involved directly or indirectly in drug and substrate recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号