首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Troponin from the myocardium and skeletal muscles: structure and properties   总被引:1,自引:0,他引:1  
The literary and experimental data on the structure and properties of cardiac and skeletal muscle troponin are reviewed. The cation--binding sites of cardiac and skeletal muscle troponin C are distinguished by specificity; the sites localized in the C-terminal part of the protein molecule can bind both Ca2+ and Mg2+, whereas the sites localized at the N-end specifically bind Ca2+. The use of bifunctional reagents revealed a number of helical sites within the structure of cardiac troponin C (residues 84-92 and 150-158) and of skeletal muscle troponin C (residues 90-98 and 125-136). A comparison of experimental data with the results of an X-ray analysis testifies to the presence in the central part of the troponin C molecule of a long alpha-helical sequence responsible for troponin C interaction with the inhibiting peptide of troponin I. The efficiency of interaction of troponin components depends on Ca2+ concentration; the integrity of the overall troponin complex is mainly provided for by troponin C interaction with troponin I and by troponin I interaction with troponin T. The interaction between troponins T and C is relatively weak, especially in the case of cardiac troponin components. Both skeletal and cardiac muscles synthesize several troponin T isoforms differing in length and amino acid composition of N-terminal 40-60 member peptides. Troponin T isoforms can undergo phosphorylation by several protein kinases. The single site of troponin T which exists in a phosphorylated state in vivo (residue Ser-1) undergoes phosphorylation by specific protein kinase (troponin T kinase) related to casein kinases II. It was assumed that the phosphorylation of Ser-1 residue of troponin T as well as the synthesis of troponin T isoforms differing in the structure of the N-terminal peptide, provides for the regulation of interaction between two neighbouring tropomyosin molecules.  相似文献   

2.
The binding of phosphorylase kinase to thin filaments and their effects on the enzyme activity as well as the contribution of the enzyme to contractile protein phosphorylation have been studied. The data obtained suggest that the kinase binding to thin filaments is controlled by the regulatory proteins, troponin and tropomyosin. The bulk of the enzyme is bound to the F-actin-tropomyosin-troponin complex which activates the enzyme in a far greater degree than each of its constituent components. Ca2+ and ATP control the kinase binding to F-actin. ATP increases the enzyme binding 6-fold; Ca2+ decrease the S0.5 value for F-actin 5-fold. In acetone powder extracts phosphorylase kinase phosphorylates thin filament-bound phosphorylase b, troponin T and troponin I as well as 51-58 kDa and 114 kDa proteins. These results suggest that phosphorylase kinase plays a role in the mechanism of synchronization of glycogenolysis and muscle contraction rates.  相似文献   

3.
Bovine heart troponin T was hydrolyzed at the single cysteine residue. This procedure resulted in two peptides--a short N-terminal peptide (40-50 amino acid residues) and a long C-terminal peptide (240 amino acid residues). The C-terminal peptide was purified to homogeneity by ion-exchange chromatography; its properties were compared to those of intact troponin T. Data from circular dichroism spectroscopy suggest that the short N-terminal peptide cleavage was unaccompanied by any conspicuous changes in the secondary structure of the large C-terminal peptide of troponin T. Unlike intact troponin T, its C-terminal peptide can interact with troponin C in the presence of Ca2+. Data from affinity chromatography demonstrated that troponin I and tropomyosin more strongly interacted with native troponin T than with its C-terminal peptide. It is concluded that the short N-terminal peptide (40-50 residues) plays an essential role in cardiac troponin T interaction with troponin and tropomyosin components.  相似文献   

4.
This review is devoted to critical analysis of data concerning the structure and functions of small heat shock proteins with apparent molecular mass 20 kD (Hsp20). We describe the structure of Hsp20, its phosphorylation by different protein kinases, interaction of Hsp20 with other small heat shock proteins, and chaperone activity of Hsp20. The distribution of Hsp20 in different animal tissues and the factors affecting expression of Hsp20 are also described. Data on the possible involvement of Hsp20 in regulation of platelet aggregation and glucose transport are presented and analyzed. Special attention is paid to literature data describing probable regulatory effect of Hsp20 on contraction of smooth muscle. Two hypotheses postulating direct effect of Hsp20 on actomyosin interaction or its effect on cytoskeleton are compared and analyzed. The most recent data on the effect of Hsp20 on apoptosis and contractile activity of cardiomyocytes are also presented.__________Translated from Biokhimiya, Vol. 70, No. 6, 2005, pp. 762–772.Original Russian Text Copyright © 2005 by Gusev, Bukach, Marston.  相似文献   

5.
Effects of troponin phosphorylation on Ca2(+)-stimulated MgATPase activity of bovine cardiac actomyosin were examined. Phosphorylation by protein kinase C of troponin I and troponin T subunits in troponin or troponin-tropomyosin complex resulted in a decreased Ca2(+)-stimulated MgATPase activity in reconstituted actomyosin, and this effect was reversed by subsequent dephosphorylation by protein phosphatase 1. It was further observed that protein kinase C phosphorylation of either troponin I or troponin T subunits led to a similar inhibition of Ca2(+)-stimulated actomyosin MgATPase activity. In all cases, EC50 values (concentrations causing 50% stimulation) for Ca2+ were not appreciably affected by troponin phosphorylation by protein kinase C. Data from phosphorylation site analysis suggests that phosphorylation of threonine 144 in troponin I and possibly threonine 280 or threonine 199 in troponin T might be important for the observed decrease of Ca2(+)-stimulated actomyosin MgATPase. It is suggested that inhibition of actomyosin MgATPase caused by protein kinase C phosphorylation of troponin I and/or troponin T represents a new mechanism that can account for in part the reported negative inotropic effect of phorbol esters on various cardiac preparations.  相似文献   

6.
Wild-type and mutant thin filaments were isolated directly from "myosinless" Drosophila indirect flight muscles to study the structural basis of muscle regulation genetically. Negatively stained filaments showed tropomyosin with periodically arranged troponin complexes in electron micrographs. Three-dimensional helical reconstruction of wild-type filaments indicated that the positions of tropomyosin on actin in the presence and absence of Ca(2+) were indistinguishable from those in vertebrate striated muscle and consistent with a steric mechanism of regulation by troponin-tropomyosin in Drosophila muscles. Thus, the Drosophila model can be used to study steric regulation. Thin filaments from the Drosophila mutant heldup(2), which possesses a single amino acid conversion in troponin I, were similarly analyzed to assess the Drosophila model genetically. The positions of tropomyosin in the mutant filaments, in both the Ca(2+)-free and the Ca(2+)-induced states, were the same, and identical to that of wild-type filaments in the presence of Ca(2+). Thus, cross-bridge cycling would be expected to proceed uninhibited in these fibers, even in relaxing conditions, and this would account for the dramatic hypercontraction characteristic of these mutant muscles. The interaction of mutant troponin I with Drosophila troponin C is discussed, along with functional differences between troponin C from Drosophila and vertebrates.  相似文献   

7.
The phosphorylation of the whole troponin complex and of the cardiac and skeletal troponin components by Ca2+-phospholipid-dependent protein kinase was studied. The activity of enzyme isolated from rat brain by ion-exchange chromatography on DEAE-Sephadex and by affinity chromatography on phosphatidylserine immobilized on polyacrylamide gel was shown to be completely dependent on Ca2+ and phospholipids and was equal to 0.4-0.6 mumol of phosphate/min.mg protein with histone H1 as substrate. The resulting preparation of Ca2+-phospholipid-dependent protein kinase was able to phosphorylate the isolated troponin I; the amount of phosphate transferred per mol of cardiac and skeletal troponin I was equal to 1.1 and 0.4, respectively. The maximal degree of phosphorylation of isolated troponin T by Ca2+-phospholipid-dependent protein kinase was 0.6 mol of phosphate per mol of troponin T both for skeletal and cardiac proteins. The rate and degree of phosphorylation were independent of the initial level of troponin T phosphorylation. Ca2+-phospholipid-dependent protein kinase did not phosphorylate the first serine residue of troponin T, i.e., the site which was phosphorylated in the highest degree after isolation of troponin T from skeletal muscles. The data obtained and the fact that the rate and degree of phosphorylation of troponins I and T within the whole troponin complex are 10-20 times less than those for isolated components provide little evidence for the participation of protein kinase C in troponin phosphorylation in vivo.  相似文献   

8.
Protein kinase C (PKC) catalytic activity was found in the cytosol, sarcolemma and sarcoplasmic reticulum, and PKC immunoreactivity was found in the striated regions and sarcolemma of rat hearts. Enhanced phosphorylation of troponin T and, to a lesser extent, troponin I was noted in isolated rat cardiac myocytes incubated with PKC activator phorbol ester, but only the phosphorylation of troponin I was stimulated by isoproterenol. It is suggested that PKC-mediated phosphorylation of troponin might be involved in regulation of myocardial function or in pathophysiology of the heart.  相似文献   

9.
The specific interaction of bovine cardiac troponin T with troponin I has been demonstrated at a 1:1 molar ratio by absorption difference spectroscopy, near and far ultraviolet circular dichroism, and gel filtration chromatography. The maintenance of the sulfhydryl groups of both proteins in the reduced state was essential in order to demonstrate interaction between cardiac troponin I and troponin T using the aforementioned methodology. Carboxamido-methylated troponin I and troponin T samples were prepared by reaction with iodoacetamide. Spectrophotometric titration of the two proteins with 2-chloromercurinitrophenol and amino acid analysis of their carboxamidomethylated derivatives revealed that cardiac troponin I possesses two cysteine residues while cardiac troponin T has one. The modified troponin T possesses properties identical to those of the native molecule. The modification of troponin I is accompanied by an increase in secondary structure and a loss in ability to interact with troponin T at 0.5 M NaCl ionic strength. However, at 0.3 M NaCl the modified troponin I was shown by gel filtration chromoatography to interact very weakly with troponin T. On the other hand, the modified troponin I interacts with troponin C in a manner identical to the native protein, indicating that the troponin T interaction domain of the molecule is distinct from that region which interacts with troponin C.  相似文献   

10.
Troponin complex is a component of skeletal and cardiac muscle thin filaments. It consists of three subunits — troponin I, T, and C, and it plays a crucial role in muscle activity, connecting changes in intracellular Ca2+ concentration with generation of contraction. In spite of more than 40 years of studies, many aspects of troponin functioning are still not completely understood, and several models describing the mechanism of muscle contraction exist. Being a key factor in the regulation of cardiac muscle contraction, troponin complex is utilized in medicine as a target for some cardiotonic drugs used in the treatment of heart failure. A number of mutations in troponin subunits are associated with development of different types of cardiomyopathy. Moreover, for the last 25 years cardiac isoforms of troponin I and T have been widely used for immunochemical diagnostics of pathologies associated with cardiomyocyte death (myocardial infarction, myocardial trauma, and others). This review summarizes the existing evidence on the structure and function of troponin complex subunits, their role in the regulation of cardiac muscle contraction, and their clinical applications.  相似文献   

11.
The mechanisms by which alpha-adrenergic stimulation of the heart in vivo can cause contractile dysfunction are not well understood. We hypothesized that alpha-adrenergic-mediated contractile dysfunction is mediated through protein kinase C phosphorylation of troponin I, which in in vitro experiments has been shown to reduce actomyosin Mg-ATPase activity. We studied pressure-volume loops in transgenic mice expressing mutant troponin I lacking protein kinase C phosphorylation sites and hypothesized altered responses to phenylephrine. As anesthesia agents can produce markedly different effects on contractility, we studied two agents: avertin and alpha-chloralose-urethane. With alpha-chloralose-urethane, at baseline, there were no contractile abnormalities in the troponin I mutants. Phenylephrine produced a 50% reduction in end-systolic elastance in wild-type controls, although a 9% increase in troponin I mutants (P <0.05). Avertin was associated with reduced contractility compared with alpha-chloralose-urethane. Avertin anesthesia, at baseline, produced a reduction in end-systolic elastance by 31% in the troponin I mutants compared with wild-type (P <0.05), and this resulted in further marked systolic and diastolic dysfunction with phenylephrine in the troponin I mutants. Dobutamine produced no significant difference in the contractile phenotype of the transgenic mice with either anesthetic regimen. In conclusion, these data (alpha-chloralose-urethane) demonstrate that alpha-adrenergic-mediated force reduction is mediated through troponin I protein kinase C phosphorylation. beta-Adrenergic responses are not mediated through this pathway. Altering the myofilament force-calcium relationship may result in in vivo increased sensitivity to negative inotropy. Thus choice of a negative inotropic anesthetic agent (avertin) with phenylephrine can lead to profound contractile dysfunction.  相似文献   

12.
Cardiac failure is one of the leading causes of mortality in developed countries. As life expectancies of the populations of these countries grow, the number of patients suffering from cardiac insufficiency also increases. Effective treatments are being sought and recently a new class of drugs, the calcium sensitisers, was developed. These drugs cause a positive inotropic effect on cardio-myocytes by interacting directly with the contractile apparatus. Their mechanism of action is not accompanied by an increase in intracellular calcium concentration at therapeutic doses, as seen for the older generation of positive inotropic drugs, and thus does not induce calcium-related deleterious effects such as arrhythmias or apoptosis. Levosimendan is a novel calcium sensitiser which has been discovered by using cardiac troponin C (cTnC) as target protein. This drug has been proved to be a well-tolerated and effective treatment for patients with severe decompensated heart failure. This review describes the basic principles of muscle contraction, the main components of the contractile apparatus and their roles in the heart contraction. The regulatory proteins troponin C (cTnC), troponin I (cTnI), troponin T (cTnT), and tropomyosin (Tm) and their interactions are discussed in details. The concept of calcium sensitisation is thereafter explained and a few examples of calcium sensitisers and their putative mechanisms are discussed. Finally, the binding of levosimendan to cTnC and its mechanism of action are described and the results discussed under the light of the action of this drug in vitro and in vivo.  相似文献   

13.
There is evidence that multi-site phosphorylation of cardiac troponin I (cTnI) by protein kinase C is important in both long- and short-term regulation of cardiac function. To determine the specific functional effects of these phosphorylation sites (Ser-43, Ser-45, and Thr-144), we measured tension and sliding speed of thin filaments in reconstituted preparations in which endogenous cTnI was replaced with cTnI phosphorylated by protein kinase C-epsilon or mutated to cTnI-S43E/S45E/T144E, cTnI-S43E/S45E, or cTnI-T144E. We used detergent-skinned mouse cardiac fiber bundles to measure changes in Ca(2+)-dependence of force. Compared with controls, fibers reconstituted with phosphorylated cTnI, cTnI-S43E/S45E/T144E, or cTnI-S43E/S45E were desensitized to Ca(2+), and maximum tension was as much as 27% lower, whereas fibers reconstituted with cTnI-T144E showed no change. In the in vitro motility assay actin filaments regulated by troponin complexes containing phosphorylated cTnI or cTnI-S43E/S45E/T144E showed both a decrease in Ca(2+) sensitivity and maximum sliding speed compared with controls, whereas filaments regulated by cTnI-S43E/S45E showed only decreased maximum sliding speed and filaments regulated by cTnI-T144E demonstrated only desensitization to Ca(2+). Our results demonstrate novel site specificity of effects of PKC phosphorylation on cTnI function and emphasize the complexity of modulation of the actin-myosin interaction by specific changes in the thin filament.  相似文献   

14.
In an effort to elucidate the mechanism of calmodulin regulation of muscle contraction, we investigated the interaction between calmodulin and troponin components in the presence of Ca2+ or Sr2+ by the use of ultracentrifugation methods and polyacrylamide-gel electrophoresis. Skeletal-muscle troponin C bound to troponin I and dissociated it from the tropomyosin-actin complex in the presence of Ca2+ or Sr2+. When troponin T was absent, calmodulin bound to troponin I and dissociated it from the tropomyosin-actin complex in the presence of Ca2+ or Sr2+. When troponin T was present, calmodulin hardly bound to troponin I even in the presence of bivalent cations. Trifluoperazine, a calmodulin antagonist, inhibited the bivalent-cation-dependent interaction between calmodulin and troponin I. Calmodulin migrated more slowly in the presence of Sr2+ than it did in the presence of EGTA but faster than it did in the presence of Ca2+ on polyacrylamide-gel electrophoresis under non-denaturing conditions. It is concluded that troponin T is not required in the calmodulin regulation of muscle contraction because troponin T inhibits the bivalent-cation-dependent interaction between calmodulin and troponin I and because calmodulin binds to troponin I and dissociates it from the tropomyosin-actin complex in a bivalent-cation-dependent manner. Sr2+-induced exposure of the hydrophobic region enables calmodulin to bind to troponin I, as is the case with Ca2+.  相似文献   

15.
Ca2+ regulation of molluscan actomyosin adenosine triphosphatase is known to be associated with the myosin molecule. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, however, also suggests the possible presence of troponin, a thin-filament-linked Ca2+-regulatory complex. In the present study, scallop troponin and tropomyosin were prepared and complexed with rabbit actin; the resulting synthetic thin filaments form a Ca2+-dependent actomyosin adenosine triphosphatase with Ca2+-insensitive rabbit myosin, indicating that the troponin in scallops is potentially functional. Scallop troponin I was isolated and mixed with chicken troponin C and troponin T, forming a functional hybrid troponin complex, indicating that scallop and vertebrate troponins may act by a common mechanism. Densitometry of sodium dodecyl sulphate/polyacrylamide gels reveals that in synthetic thin filaments there are larger amounts of troponin than are present in native thin filaments. Amounts present in the intact muscle were not determined.  相似文献   

16.
Molluscan troponin regulates muscle contraction through a novel Ca(2+)-dependent activating mechanism associated with Ca(2+)-binding to the C-terminal domain of troponin C. To elucidate the further details of this regulation, we performed limited chymotryptic digestion of the troponin complex from akazara scallop striated muscle. The results indicated that troponin T is very susceptible to the protease, compared to troponin C or troponin I. The cleavage occurred at the C-terminal extension, producing an N-terminal 33-kDa fragment and a C-terminal 6-kDa fragment. This extension is conserved in various invertebrate troponin T proteins, but not in vertebrate troponin T. A ternary complex composed of the 33-kDa fragment of troponin T, troponin I, and troponin C could be separated from the 6-kDa troponin T fragment by gel filtration. This complex did not show any Ca(2+)-dependent activation of the Mg-ATPase activity of rabbit-actomyosin-scallop-tropomyosin. In addition, the actin-tropomyosin-binding affinity of this complex was significantly decreased with increasing Ca(2+) concentration. These results indicate that the C-terminal extension of molluscan troponin T plays a role in anchoring the troponin complex to actin-tropomyosin filaments and is essential for regulation.  相似文献   

17.
Troponin and its components from ascidian smooth muscle   总被引:3,自引:0,他引:3  
Troponin was isolated from the thin filaments of ascidian smooth muscle and separated into three components by ion-exchange chromatography, the molecular weights of which were 33,000, 24,000, and 18,000, respectively. The three components were designated as troponin t (TN-T), troponin I (TN-I), and troponin C (TN-C) in order of molecular weight, since each component had properties similar to those of the respective components of vertebrate skeletal-muscle troponin. The ascidian troponin or the mixture of the three components conferred Ca2+-sensitivity on reconstituted rabbit actomyosin in the presence of tropomyosin. One of the characteristics of the ascidian troponin was Ca2+-dependent activation of actin-myosin interaction in collaboration with tropomyosin, whereas its inhibitory action on the actomyosin ATPase in the absence of Ca2+ was less remarkable. From this, it is concluded that in the ascidian smooth muscle actin-myosin interaction is regulated by an actin-linked troponin-tropomyosin system, but the ascidian troponin acts as a Ca2+-dependent activator of an actomyosin system.  相似文献   

18.
Data on succinate-ubiquinone reductase are critically reviewed. The structural and catalytic properties of succinate dehydrogenase and succinate-ubiquinone reductase are compared. The redox components, active centers and proteins involved in the enzyme interaction with ubiquinone are described. Some structural and kinetic features of the succinate-ubiquinone reductase as the respiratory chain component and feasible mechanisms of regulation of the succinate-ubiquinone reductase activity are discussed.  相似文献   

19.
The fine structurel distribution of troponin on thin filaments in developing myofibrils was investigated by the use of immunoelectron microscopy. Embryonic chick skeletal muscle cells grown in vitro were treated with antibodies against each of the troponin components (troponin T, I, and C) from adult chicken muscles. Each antibody was distributed along the thin filaments with a period of 38 nm. It is concluded that these newly synthesized regulatory proteins are assembled at their characteristic position from the initial phases of myofibrillogenesis.  相似文献   

20.
The paper is concerned with the results of recent researches devoted to studies of the structure, properties and physiological role of alpha 2-macroglobulin, one of main inhibitors of blood proteolytic enzymes. Data are presented on its primary and quaternary structure, mechanisms of interaction with proteinases. The role of alpha 2-macroglobulin in regulation of the activity of proteinases participating in blood coagulation, fibrinolysis, kininogenesis, immune reactions is shown. Possibilities of its application in medicine are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号