首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Disease-related PrP(Sc) [pathogenic PrP (prion protein)] is classically distinguished from its normal cellular precursor, PrP(C)(cellular PrP) by its detergent insolubility and partial resistance to proteolysis. Although molecular diagnosis of prion disease has historically relied upon detection of protease-resistant fragments of PrP(Sc) using PK (proteinase K), it is now apparent that a substantial fraction of disease-related PrP is destroyed by this protease. Recently, thermolysin has been identified as a complementary tool to PK, permitting isolation of PrP(Sc) in its full-length form. In the present study, we show that thermolysin can degrade PrP(C) while preserving both PK-sensitive and PK-resistant isoforms of disease-related PrP in both rodent and human prion strains. For mouse RML (Rocky Mountain Laboratory) prions, the majority of PK-sensitive disease-related PrP isoforms do not appear to contribute significantly to infectivity. In vCJD (variant Creutzfeldt-Jakob disease), the human counterpart of BSE (bovine spongiform encephalopathy), up to 90% of total PrP present in the brain resists degradation with thermolysin, whereas only approximately 15% of this material resists digestion by PK. Detection of PK-sensitive isoforms of disease-related PrP using thermolysin should be useful for improving diagnostic sensitivity in human prion diseases.  相似文献   

3.
In the prion diseases, a prolonged, asymptomatic incubation period precedes the onset of neurologic dysfunction. At present, a noninvasive test is not available for the presymptomatic diagnosis of prion disease, and thus the report of a test for prions using urine has been of great interest (Shaked, G. M., Shaked, Y., Kariv-Inbal, Z., Halimi, M., Avraham, I., and Gabizon, R. (2001) J. Biol. Chem. 276, 31479-31482). Using Western immunoblots with the anti-prion protein (PrP) 3F4 monoclonal antibody and an anti-mouse IgG secondary antibody, a protease-resistant PrP was reported in the urine of Syrian hamsters and humans with prion disease. Here we have demonstrated that this purportedly "protease-resistant PrP" band in the urine of diseased hamsters is detectable using the anti-mouse IgG secondary antibody in the absence of the 3F4 monoclonal antibody. Mass spectrometric analysis identified an immunoglobulin light chain in the band but found no PrP peptides. No similar band was found in the urine of uninfected hamsters or in brain homogenates from normal or prion-infected hamsters. Moreover, the band in the urine of infected hamsters was not detected using two chimeric human-mouse recombinant anti-PrP antibody fragments followed by an anti-human IgG secondary antibody. Our results indicate that the band detected under previously published conditions is due to the cross-reactivity of the anti-mouse IgG antibody with IgG light chains and possibly heavy chain fragments in urine, but not with PrP.  相似文献   

4.
Inherited prion disease (IPD) is caused by autosomal-dominant pathogenic mutations in the human prion protein (PrP) gene (PRNP). A proline to leucine substitution at PrP residue 102 (P102L) is classically associated with Gerstmann-Sträussler-Scheinker (GSS) disease but shows marked clinical and neuropathological variability within kindreds that may be caused by variable propagation of distinct prion strains generated from either PrP 102L or wild type PrP. To-date the transmission properties of prions propagated in P102L patients remain ill-defined. Multiple mouse models of GSS have focused on mutating the corresponding residue of murine PrP (P101L), however murine PrP 101L, a novel PrP primary structure, may not have the repertoire of pathogenic prion conformations necessary to accurately model the human disease. Here we describe the transmission properties of prions generated in human PrP 102L expressing transgenic mice that were generated after primary challenge with ex vivo human GSS P102L or classical CJD prions. We show that distinct strains of prions were generated in these mice dependent upon source of the inoculum (either GSS P102L or CJD brain) and have designated these GSS-102L and CJD-102L prions, respectively. GSS-102L prions have transmission properties distinct from all prion strains seen in sporadic and acquired human prion disease. Significantly, GSS-102L prions appear incapable of transmitting disease to conventional mice expressing wild type mouse PrP, which contrasts strikingly with the reported transmission properties of prions generated in GSS P102L-challenged mice expressing mouse PrP 101L. We conclude that future transgenic modeling of IPDs should focus exclusively on expression of mutant human PrP, as other approaches may generate novel experimental prion strains that are unrelated to human disease.  相似文献   

5.
In the presence of a low concentration of denaturants or detergents, acidic pH triggers a conformational transition of alpha-helices into beta-sheets in recombinant prion protein (PrP), likely mimicking some aspects of the transformation of host-encoded normal cellular PrP (PrP(C)) into its pathogenic isoform (PrP(Sc)). Here we observed the effects of acidic pH and guanidine hydrochloride (GdnHCl) on the physicochemical and structural properties of PrP(C) derived from normal human brain and determined the ability of the acid/GdnHCl-treated PrP to form a proteinase K (PK)-resistant species in the absence and presence of PrP(Sc) template. After treatment with 1.5 m GdnHCl at pH 3.5, PrP(C) from normal brain homogenates was converted into a detergent-insoluble form similar to PrP(Sc). Unlike PrP(Sc), however, the treated brain PrP(C) was protease-sensitive and retained epitope accessibility to monoclonal antibodies 3F4 and 6H4. Brain PrP(C) treated with acidic pH/GdnHCl acquired partial PK resistance upon further treatment with low concentrations of sodium dodecyl sulfate (SDS). Formation of this PrP(Sc)-like isoform was greatly enhanced by incubation with trace quantities of PrP(Sc) from Creutzfeldt-Jakob disease brain. Acid/GdnHCl-treated brain PrP may constitute a "recruitable intermediate" in PrP(Sc) formation. Further structural rearrangement seems essential for this species to acquire PK resistance, which can be promoted by the presence of a PrP(Sc) template.  相似文献   

6.
There is evidence that prion protein dimers may be involved in the formation of the scrapie prion protein, PrP(Sc), from its normal (cellular) form, PrP(c). Recently, the crystal structure of the human prion protein in a dimeric form was reported. Here we report for the first time the overexpression of a human PrP dimer covalently linked by a FLAG peptide (PrP::FLAG::PrP) in the methylotrophic yeast Pichia pastoris. FLAG-tagged human PrP (aa1-aa253) (huPrP::FLAG) was also expressed in the same system. Treatment with tunicamycin and endoglycosidase H showed that both fusion proteins are expressed as various glycoforms. Both PrP proteins were completely digested by proteinase K (PK), suggesting that the proteins do not have a PrP(Sc) structure and are not infectious. Plasma membrane fractionation revealed that both proteins are transported to the plasma membrane of the cell. The glycosylated proteins might act as powerful tools for crystallization trials, PrP(c)/PrP(Sc) conversion studies and other applications in the life cycle of prions.  相似文献   

7.
The hypothesis that host prion protein (PrP) converts into an infectious prion form rests on the observation that infectivity progressively decreases in direct proportion to the decrease of PrP with proteinase K (PK) treatment. PrP that resists limited PK digestion (PrP-res, PrP(sc)) has been assumed to be the infectious form, with speculative types of misfolding encoding the many unique transmissible spongiform encephalopathy (TSE) agent strains. Recently, a PK sensitive form of PrP has been proposed as the prion. Thus we re-evaluated total PrP (sensitive and resistant) and used a cell-based assay for titration of infectious particles. A keratinase (NAP) known to effectively digest PrP was compared to PK. Total PrP in FU-CJD infected brain was reduced to ≤0.3% in a 2 h PK digest, yet there was no reduction in titer. Remaining non-PrP proteins were easily visualized with colloidal gold in this highly infectious homogenate. In contrast to PK, NAP digestion left 0.8% residual PrP after 2 h, yet decreased titer by >2.5 log; few residual protein bands remained. FU-CJD infected cells with 10× the infectivity of brain by both animal and cell culture assays were also evaluated. NAP again significantly reduced cell infectivity (>3.5 log). Extreme PK digestions were needed to reduce cell PrP to <0.2%, yet a very high titer of 8 logs survived. Our FU-CJD brain results are in good accord with the only other report on maximal PrP destruction and titer. It is likely that one or more residual non-PrP proteins may protect agent nucleic acids in infectious particles.  相似文献   

8.
An amber mutation at codon 145 (Y145stop) of the prion protein gene results in a variant of an inherited human prion disease named Gerstmann-Str?ussler-Scheinker syndrome. The characteristic features of this disorder include amyloid deposits of prion protein in cerebral parenchyma and vessels. We have studied the biosynthesis and processing of the prion protein containing the Y145stop mutation (PrP(145)) in transfected human neuroblastoma cells in an attempt to clarify the effect of the mutation on the metabolism of PrP(145) and to gain insight into the underlying pathogenetic mechanism. Our results demonstrate that 1) a significant proportion of PrP(145) is not processed post-translationally and retains the N-terminal signal peptide, 2) most PrP(145) is degraded very rapidly by the proteasome-mediated pathway, 3) blockage of proteasomal degradation results in intracellular accumulation of PrP(145), 4) most of the accumulated PrP(145) is detergent-insoluble, and both the detergent-soluble and -insoluble fractions are resistant to mild proteinase K (PK) treatment, suggesting that PK resistance is not simply because of aggregation. The present study demonstrates for the first time that a mutant prion protein is degraded through the proteasomal pathway and acquires PK-resistance if degradation is impaired.  相似文献   

9.
Monoclonal antibodies (Mab) to the prion protein (PrP) have been critical to the neuropathological characterisation of PrP-related diseases in human and animals. Although PrP is highly evolutionary conserved, there is some sequence divergence among species. We have analysed the F89/160.1.5 Mab raised against the bovine prion protein for immunoreactivity with the human prion protein. The antibody recognised the IHFG epitope of the prion protein. An analysis of the Swiss Prot database confirmed conservation of the epitope in humans. Further immunohistochemical (IHC) analysis showed a highly sensitive (final concentration 55 ng/ml) and specific antibody for prion detection in humans. The observed immunoreactivity of the prion protein did not differ from that observed after staining with the well-known 3F4 (Senetek) monoclonal antibody.  相似文献   

10.
Chronic wasting disease (CWD), a transmissible prion disease that affects elk and deer, poses new challenges to animal and human health. Although the transmission of CWD to humans has not been proven, it remains a possibility. If this were to occur, it is important to know whether the "acquired" human prion disease would show a phenotype including the scrapie prion protein (PrP(Sc)) features that differ from those associated with human sporadic prion disease. In this study, we have compared the pathological profiles and PrP(Sc) characteristics in brains of CWD-affected elk and deer with those in subjects with sporadic Creutzfeldt-Jakob disease (CJD), as well as CJD-affected subjects who might have been exposed to CWD, using histopathology, immunohistochemistry, immunoblotting, conformation stability assay, and N-terminal protein sequencing. Spongiform changes and intense PrP(Sc) staining were present in several brain regions of CWD-affected animals. Immunoblotting revealed three proteinase K (PK)-resistant bands in CWD, representing different glycoforms of PrP(Sc). The unglycosylated PK-resistant PrP(Sc) of CWD migrated at 21 kDa with an electrophoretic mobility similar to that of type 1 human PrP(Sc) present in sporadic CJD affecting subjects homozygous for methionine at codon 129 (sCJDMM1). N-terminal sequencing showed that the PK cleavage site of PrP(Sc) in CWD occurred at residues 82 and 78, similar to that of PrP(Sc) in sCJDMM1. Conformation stability assay also showed no significant difference between elk CWD PrP(Sc) and the PrP(Sc) species associated with sCJDMM1. However, there was a major difference in glycoform ratio of PrP(Sc) between CWD and sCJDMM1 affecting both subjects potentially exposed to CWD and non-exposed subjects. Moreover, PrP(Sc) of CWD exhibited a distinct constellation of glycoforms distinguishable from that of sCJDMM1 in two-dimensional immunoblots. These findings underline the importance of detailed PrP(Sc) characterization in trying to detect novel forms of acquired prion disease.  相似文献   

11.
A familial prion disorder with a proline to leucine substitution at residue 102 of the prion protein (PrP(102L)) is typically associated with protease-resistant PrP fragments (PrP(Sc)) in the brain parenchyma that are infectious to recipient animals. When modeled in transgenic mice, a fatal neurodegenerative disease develops, but, unlike the human counterpart, PrP(Sc) is lacking and transmission to recipient animals is questionable. Alternate mice expressing a single copy of PrP(102L) (mouse PrP(101L)) do not develop spontaneous disease, but show dramatic susceptibility to PrP(Sc) isolates from different species. To understand these discrepant results, we studied the biogenesis of human PrP(102L) in a cell model. Here, we report that cells expressing PrP(102L) show decreased expression of the normal 18-kDa fragment on the plasma membrane. Instead, a 20-kDa fragment, probably derived from transmembrane PrP ((Ctm)PrP), accumulates on the cell surface. Because the 20-kDa fragment includes an amyloidogenic region of PrP that is disrupted in the 18-kDa form, increased surface expression of 20-kDa fragment may enhance the susceptibility of these cells to PrP(Sc) infection by providing an optimal substrate, or by amplifying the neurotoxic signal of PrP(Sc). Thus, altered susceptibility of PrP(101L) mice to exogenous PrP(Sc) may be mediated by the 20-kDa (Ctm)PrP fragment, rather than PrP(102L) per se.  相似文献   

12.
目的:利用反转录病毒载体构建猪载脂蛋白B mRNA编辑酶催化多肽样蛋白(APOBEC)3F重组质粒,并实现其在猪肾细胞PK15中的表达。方法:用RT-PCR方法扩增五指山猪来源的外周血淋巴细胞APOBEC3F基因,将其定点插入反转录病毒载体pMSCV neo中,同时于插入位点两侧分别添加FLAG和GFP标签,构建重组质粒pMSCV-FLAG-A3F-GFP,并进行酶切、测序鉴定;将鉴定正确的重组质粒与pVSV-G、pGag-Pol共转染包装细胞HEK293T,分别于转染后48~72 h收集细胞的培养上清以获得假型病毒粒子;用该假型病毒感染猪源细胞PK15,通过PCR、Western印迹检测目的基因的整合及表达。结果:PCR扩增到1254 bp的猪APOBEC3F基因,重组质粒pMSCV-FLAG-A3F-GFP经酶切、测序,结果无误;3质粒共转染HEK293T细胞包装出的假型病毒感染PK15细胞后观察到GFP表达;从感染假型病毒的PK15细胞基因组中扩增到1254 bp的猪APOBEC3F基因,Western印迹检测到78.1×103的猪APOBEC3F蛋白的表达。结论:实现了反转录病毒载体介导的猪APOBEC3F在猪源细胞PK15中的整合与表达,为深入研究该分子对猪内源性反转录病毒(PERV)的抑制作用奠定了基础。  相似文献   

13.
Neuroblastoma-derived N2a-PK1 cells, fibroblastic LD9 cells, and CNS-derived CAD5 cells can be infected efficiently and persistently by various prion strains, as measured by the standard scrapie cell assay. Swainsonine, an inhibitor of Golgi α-mannosidase II that causes abnormal N-glycosylation, strongly inhibits infection of PK1 cells by RML, 79A and 22F, less so by 139A, and not at all by 22L prions, and it does not diminish propagation of any of these strains in LD9 or CAD5 cells. Misglycosylated PrP(C) formed in the presence of swainsonine is a good substrate for conversion to PrP(Sc), and misglycosylated PrP(Sc) is fully able to trigger infection and seed the protein misfolding cyclic amplification reaction. Distinct subclones of PK1 cells mediate swainsonine inhibition to very different degrees, implicating misglycosylation of one or more host proteins in the inhibitory process. The use of swainsonine and other glycosylation inhibitors described herein enhances the ability of the cell panel assay to differentiate between prion strains. Moreover, as shown elsewhere, the susceptibility of prions to inhibition by swainsonine in PK1 cells is a mutable trait.  相似文献   

14.
The principal infectious and pathogenic agent in all prion disorders is a beta-sheet-rich isoform of the cellular prion protein (PrP(C)) termed PrP-scrapie (PrP(Sc)). Once initiated, PrP(Sc) is self-replicating and toxic to neuronal cells, but the underlying mechanisms remain unclear. In this report, we demonstrate that PrP(C) binds iron and transforms to a PrP(Sc)-like form (*PrP(Sc)) when human neuroblastoma cells are exposed to an inorganic source of redox iron. The *PrP(Sc) thus generated is itself redox active, and it induces the transformation of additional PrP(C), simulating *PrP(Sc) propagation in the absence of brain-derived PrP(Sc). Moreover, limited depletion of iron from prion disease-affected human and mouse brain homogenates and scrapie-infected mouse neuroblastoma cells results in 4- to 10-fold reduction in proteinase K (PK)-resistant PrP(Sc), implicating redox iron in the generation, propagation, and stability of PK-resistant PrP(Sc). Furthermore, we demonstrate increased redox-active ferrous iron levels in prion disease-affected brains, suggesting that accumulation of PrP(Sc) is modulated by the combined effect of imbalance in brain iron homeostasis and the redox-active nature of PrP(Sc). These data provide information on the mechanism of replication and toxicity by PrP(Sc), and they evoke predictable and therapeutically amenable ways of modulating PrP(Sc) load.  相似文献   

15.
Prion diseases are zoonotic infectious diseases commonly transmissible among animals via prion infections with an accompanying deficiency of cellular prion protein (PrP(C)) and accumulation of an abnormal isoform of prion protein (PrP(Sc)), which are observed in neurons in the event of injury and disease. To understand the role of PrP(C) in the neuron in health and diseases, we have established an immortalized neuronal cell line HpL3-4 from primary hippocampal cells of prion protein (PrP) gene-deficient mice by using a retroviral vector encoding Simian Virus 40 Large T antigen (SV40 LTag). The HpL3-4 cells exhibit cell-type-specific proteins for the neuronal precursor lineage. Recently, this group and other groups have established PrP-deficient cell lines from many kinds of cell types including glia, fibroblasts and neuronal cells, which will have a broad range of applications in prion biology. In this review, we focus on recently obtained information about PrP functions and possible studies on prion infections using the PrPdeficient cell lines.  相似文献   

16.
Prion diseases are fatal neurodegenerative diseases, which can be acquired, sporadic or genetic, the latter being linked to mutations in the gene encoding prion protein. We have recently described the importance of subdomain separation in the conversion of prion protein (PrP). The goal of the present study was to investigate the effect of increasing the hydrophobic interactions within the H2-H3 subdomain on PrP conversion. Three hydrophobic mutations were introduced into PrP. The mutation V209I associated with human prion disease did not alter protein stability or in vitro fibrillization propensity of PrP. The designed mutations V175I and T187I on the other hand increased protein thermal stability. V175I mutant fibrillized faster than wild-type PrP. Conversion delay of T187I was slightly longer, but fluorescence intensity of amyloid specific dye thioflavin T was significantly higher. Surprisingly, cells expressing V209I variant exhibited inefficient proteinase K resistant PrP formation upon infection with 22L strain, which is in contrast to cell lines expressing wild-type, V175I and T187I mPrPs. In agreement with increased ThT fluorescence at the plateau T187I expressing cell lines accumulated an increased amount of the proteinase K-resistant prion protein. We showed that T187I induces formation of thin fibrils, which are absent from other samples. We propose that larger solvent accessibility of I187 in comparison to wild-type and other mutants may interfere with lateral annealing of filaments and may be the underlying reason for increased conversion efficiency.  相似文献   

17.
Prion protein gene expression in cultured cells   总被引:6,自引:0,他引:6  
A single copy gene encodes both the scrapie (PrPSc) and cellular (PrPC) isoforms of the prion protein (PrP). Cultured cell lines were found to express the endogenous PrP mRNA at levels comparable to those observed in the brains of adult rodents; however, these cells were invariably found to express greatly reduced levels of PrP. In all the cell lines examined, PrP was undetectable by Western immunoblot analysis. These cells were also poor recipients for expression constructs linking the hamster PrP gene open reading frame to several strong eukaryotic promoters; stable clones derived by transfection of these expression vectors failed to show elevated expression of PrP. When extremely high levels of PrP mRNA were produced using either an insect baculovirus or a mammalian SV40 based vector, significant quantities of PrP were produced, although in both cases the proteins were apparently processed differently from the PrPC observed in brains. In an expression system using an SV40 late promoter vector in monkey COS-7 cells, a significant fraction of PrP was transported to the cell surface where PrPC is found in vivo. PrP synthesized by the baculovirus vector failed to induce scrapie in hamsters and did not possess the characteristics of the PrPSc isoform associated with infectivity. The SV40 late promoter vector system may permit experiments designed to elucidate the role of PrPSc during scrapie infection as well as the function of PrPC in normal metabolism.  相似文献   

18.
We prepared β-sheet-rich recombinant full-length prion protein (β-form PrP) (Jackson, G. S., Hosszu, L. L., Power, A., Hill, A. F., Kenney, J., Saibil, H., Craven, C. J., Waltho, J. P., Clarke, A. R., and Collinge, J. (1999) Science 283, 1935-1937). Using this β-form PrP and a human single chain Fv-displaying phage library, we have established a human IgG1 antibody specific to β-form but not α-form PrP, PRB7 IgG. When prion-infected ScN2a cells were cultured with PRB7 IgG, they generated and accumulated PRB7-binding granules in the cytoplasm with time, consequently becoming apoptotic cells bearing very large PRB7-bound aggregates. The SAF32 antibody recognizing the N-terminal octarepeat region of full-length PrP stained distinct granules in these cells as determined by confocal laser microscopy observation. When the accumulation of proteinase K-resistant PrP was examined in prion-infected ScN2a cells cultured in the presence of PRB7 IgG or SAF32, it was strongly inhibited by SAF32 but not at all by PRB7 IgG. Thus, we demonstrated direct evidence of the generation and accumulation of β-sheet-rich PrP in ScN2a cells de novo. These results suggest first that PRB7-bound PrP is not responsible for the accumulation of β-form PrP aggregates, which are rather an end product resulting in the triggering of apoptotic cell death, and second that SAF32-bound PrP lacking the PRB7-recognizing β-form may represent so-called PrP(Sc) with prion propagation activity. PRB7 is the first human antibody specific to β-form PrP and has become a powerful tool for the characterization of the biochemical nature of prion and its pathology.  相似文献   

19.
The critical step in the pathogenesis of transmissible spongiform encephalopathies (prion diseases) is the conversion of a cellular prion protein (PrP(c)) into a protease-resistant, beta-sheet rich form (PrP(Sc)). Although the disease transmission normally requires direct interaction between exogenous PrP(Sc) and endogenous PrP(C), the pathogenic process in hereditary prion diseases appears to develop spontaneously (i.e. not requiring infection with exogenous PrP(Sc)). To gain insight into the molecular basis of hereditary spongiform encephalopathies, we have characterized the biophysical properties of the recombinant human prion protein variant containing the mutation (Phe(198) --> Ser) associated with familial Gerstmann-Straussler-Scheinker disease. Compared with the wild-type protein, the F198S variant shows a dramatically increased propensity to self-associate into beta-sheet-rich oligomers. In a guanidine HCl-containing buffer, the transition of the F198S variant from a normal alpha-helical conformation into an oligomeric beta-sheet structure is about 50 times faster than that of the wild-type protein. Importantly, in contrast to the wild-type PrP, the mutant protein undergoes a spontaneous conversion to oligomeric beta-sheet structure even in the absence of guanidine HCl or any other denaturants. In addition to beta-sheet structure, the oligomeric form of the protein is characterized by partial resistance to proteinase K digestion, affinity for amyloid-specific dye, thioflavine T, and fibrillar morphology. The increased propensity of the F198S variant to undergo a conversion to a PrP(Sc)-like form correlates with a markedly decreased thermodynamic stability of the native alpha-helical conformer of the mutant protein. This correlation supports the notion that partially unfolded intermediates may be involved in conformational conversion of the prion protein.  相似文献   

20.
Tau融合蛋白及其缺失突变体与朊蛋白的体外作用分析   总被引:1,自引:0,他引:1  
在部分朊病毒病(prion diseases)中,高度磷酸化的微管相关蛋白tau与朊蛋白(prion protein,PrP)发生共定位,tau蛋白可能在朊病毒病的病理机制中有重要作用. 本室已经证明二者可以发生分子间相互作用,本文进一步分析了tau蛋白与prion的体外相互作用及作用位点. 利用RT-PCR方法从人源细胞系SHSY5Y cDNA中扩增出微管相关蛋白tau全长cDNA序列,克隆至质粒pGEX-2T载体,在大肠杆菌中诱导表达融合蛋白GST-tau. 利用GST pull-down及免疫共沉淀方法检测全长tau蛋白与PrP23-231的分子间相互作用. 进一步表达tau 蛋白的各种缺失突变体,确定tau蛋白与PrP蛋白的相互作用位点. 结果表明,所表达的全长tau蛋白及各种缺失突变体均为可溶性蛋白,Western印迹结果显示,各种蛋白均能很好的被tau蛋白单抗识别. GST pull-down和免疫共沉淀实验均显示,原核表达的全长tau蛋白可与全长的PrP蛋白在体外发生相互作用,并确定相互作用位点位于tau蛋白的N端序列及中段的重复区. 上述结果为研究tau蛋白与PrP的相互作用在朊病毒病的发病机制中的意义提供了一定的理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号