首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse embryonic stem cells are pluripotent cells that are derived from the inner cell mass of blastocysts. When induced to synchronously enter a program of differentiation in vitro, they form embryoid bodies that contain cells of the mesodermal, hematopoietic, endothelial, muscle, and neuronal lineages. Here, we used a panel of marker genes with early expression within the germ layers (oct-3, Brachyury T, Fgf-5, nodal, and GATA-4) or a variety of lineages (flk-1, Nkx-2.5, EKLF, and Msx3) to determine how progressive differentiation of embryoid bodies in culture correlated with early postimplantation development of mouse embryos. Using RNA in situ hybridization, we found that the temporal and spatial relationships existing between these marker genes in vivo were maintained also in vitro. Studying the onset of marker gene expression allowed us also to determine the time course of differentiation during the formation of embryoid bodies. Thus, stages equivalent to embryogenesis between implantation and the beginning of gastrulation (4.5-6.5 d.p.c.) occur within the first two days of embryoid body differentiation. Between days 3 and 5, embryoid bodies contain cell lineages found in embryos during gastrulation at 6.5 to 7.0 d.p.c., and after day 6 in culture, embryoid bodies are equivalent to early organogenesis-stage embryos (7.5 d.p.c.). In addition, we demonstrate that the panel of developmental markers can be applied in a screen for stage- or lineage-specific genes. Reporter gene expression from entrapment vector insertions can be co-localized with expression of specific markers within the same cell during embryoid body formation as well as during embryogenesis. Our results thus demonstrate the power of embryoid body formation as an in vitro model system to study early lineage determination and organogenesis in mammals, and indicate that they will prove to be useful tools for identifying developmental genes whose expression is restricted to particular lineages.  相似文献   

2.
Undifferentiated cells of a clonal line of teratocarcinoma can differentiate in vitro into embryoid bodies with morphological and biochemical features of early mouse embryo. During the first step of differentiation protein synthesis has been analysed by 2 dimensional gel electrophoresis. While new proteins are synthesized, the synthesis of others turned off with the appearance of endodermal cells in embryoid bodies. We have compared protein synthesis during teratocarcinoma differentiation and during early mouse embryogenesis at three stages of mouse preimplantation embryo. The results demonstrate that only the late blastocyst protein synthesis pattern shows most of the polypeptides identified in the differentiated protein synthesis pattern of teratocarcinoma. In contrast, protein synthesis during the early stages of mouse embryonic development is very different from protein synthesis in undifferentiated teratocarcinoma.  相似文献   

3.
Similarities in the differentiation of mouse embryos and ES cell embryoid bodies suggest that aspects of early mammalian embryogenesis can be studied in ES cell embryoid bodies. In an effort to understand the regulation of cellular differentiation during early mouse embryogenesis, we altered the expression of the Pem homeobox-containing gene in ES cells. Pem is normally expressed in the preimplantation embryo and expressed in a lineage-restricted fashion following implantation, suggesting a role for Pem in regulating cellular differentiation in the early embryo. Here, we show that the forced expression of Pem from the mouse Pgk-1 promoter in ES cells blocks the in vitro and in vivo differentiation of the cells. In particular, embryoid bodies produced from these Pgk-Pem ES cells do not differentiate into primitive endoderm or embryonic ectoderm, which are prominent features of early embryoid bodies from normal ES cells. This Pgk-Pem phenotype is also different from the null phenotype, as embryoid bodies derived from ES cells in which endogenous Pem gene expression has been blocked show a pattern of differentiation similar to that of normal ES cells. When the Pgk-Pem ES cells were introduced into subcutaneous sites of nude mice, only undifferentiated EC-like cells were found in the teratomas derived from the injected cells. The Pem-dependent block of ES cell differentiation appears to be cell autonomous; Pgk-Pem ES cells did not differentiate when mixed with normal, differentiating ES cells. A block to ES cell differentiation, resulting from the forced expression of Pem, can also be produced by the forced expression of the nonhomeodomain region of Pem. These studies are consistent with a role for Pem in regulating the transition between undifferentiated and differentiated cells of the early mouse embryo.  相似文献   

4.
A tissue culture line of oil palm produced embryoids and during the embryogenesis large quantities of lipid were stored in the cells. The synthesis of the lipid was monitored by measuring incorporation of[1-14C]acetate, under optimum conditions, into the total lipid and separation by TLC into neutral and polar lipid. Both synthesis of triacylglycerol and polar lipid increased during embryoid formation. A rapid increase in the formation of polar lipid occurred in the period just before the embryoids became visible and this probably corresponded with the increased rate of cell division that occurred at that time.  相似文献   

5.
6.
F9 embryonal carcinoma (EC) cells, cultured in suspension in medium containing 5 X 10(-8) M retinoic acid, aggregate and differentiate into embryoid bodies with an outer layer of visceral endoderm cells that synthesize and secrete alphafetoprotein (AFP) (Hogan, B. L. M., A. Taylor, and E. Adamson, 1981, Nature (Lond.). 291:235-237). Here we analyze the formation of the outer layer of cells as a model for epithelial differentiation. Three morphological phases are described, but analyses of cell numbers and the synthetic rates of some proteins, as well as the appearance of markers of visceral endoderm and basement membrane, show that the formation of the outer layer occurs as an orderly progression of multiple events. The markers used to follow the ontogeny of epithelial layer formation include SSEA-1, l, and i blood group antigens, laminin, fibronectin, type IV collagen, cytoskeletal intermediate filament proteins (vimentin, Endo A, and B), and AFP. The onset of epithelium formation occurs between the third and fourth day of culture, but its function is maximally expressed only when it is well organized. We found the rate of AFP secretion to be a measure of the proper alignment and maturity of the epithelium which occurs at the seventh or eighth day. This model of epithelium formation may help to explain how similar processes occur during embryogenesis.  相似文献   

7.
The process of differentiation of embryoid bodies of mouse teratocarcinoma OTT6050 transplanted into the lung of syngeneic mice (129/Sv) is described. Embryoid bodies took more than 2 weeks to differentiate, and several kinds of differentiated tissues appeared often in the colonies derived from a single embryoid body. All the colonies with differentiated tissues were larger than 100μm in diameter.
Three steps on the differentiation of embryoid bodies can be distinguished by microscopic observations on histological preparations of tumors at different periods after injection. The first step is the deformation of the embryoid bodies and the disappearance of the outer endodermal cells, which occurs within a few days after injection. In the second step, which begins 5–7 days after injection, clusters of embryonal carcinoma cells in the colony are identified by the PAS reaction. The third step starts about 10 days after injection, and is characterized by the formation of tubular structures in some clusters.  相似文献   

8.
Electron microscopic observation of somatic embryogenesis from cultured immature wheat embryos revealed the presence of a lot of small vacuoles, a large nucleus, clear nucleolus and polynucleoli. The electron density of cytoplasm was strengthened during somatic embryogenesis. Quantity and type of organelles—plastid, ribosome and mitochondrion were increased; thickened cell wall, disappeared plasmodesmata, increased organelles andstarch accumulation in the embryogenic cells. Nucleolus vacuoles, autophagic vacuoles and secretory vesicles were present in the embryogenic cells with thickened cell walls. The multicellular proembryos, globular embryoid and pear-shaped embryoid were surrounded by an envelop, but plasmodesmata existed extensively between cells of somatic embryoid. The membranous structures appeared in the plastid which underwent transformation into chloroplast in the cells of growing point in almost mature embryoid. The relation of the above-mentioned structureal changes to somatic embryogenesis is also discussed.  相似文献   

9.
Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.  相似文献   

10.
Immunolocalization of the bundle sheath-specific enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase), and of the mesophyll-specific enzyme, phosphoenolpyruvate carboxylase (PEPCase), was used to follow development of the C4 pattern of photosynthetic enzyme expression during leaf growth in Atriplex rosea. The leaf tissue used for this characterization was also used in a parallel ultrastructural study, so that the temporal coordination of developmental changes in enzyme expression and cell structure could be monitored. Bundle sheath-specific accumulation of RuBPCase occurs early, at the time that bundle sheath tissue is delimited from the ground meristem, and follows the order of vein initiation. PEPCase proteins were detected 2–4 days after the first appearance of RuBPCase. PEPCase accumulation is restricted to ground meristem cells that are in direct contact with bundle sheath tissue and that will become C4 mesophyll; PEPCase was never found in more distant ground tissue. This pattern suggests that, while bundle sheath-specific accumulation of RuBPCase coincides with formation of the appropriate precursor cells, PEPCase expression is delayed until mesophyll tissue reaches a critical developmental stage. Cell-specific expression of both photosynthetic enzymes occurs well before the striking anatomical divergence of bundle sheath and mesophyll tissues, suggesting that biochemical compartmentation might serve as a developmental signal for subsequent structural differentiation.  相似文献   

11.
12.
13.
Acetyl-CoA carboxylase catalyzes the first committed step in the synthesis of long chain fatty acids. In this study, we observed that treatment of 3T3-L1 cells with biotin chloroacetylated at the 1' nitrogen reduced the enzymatic activity of cytosolic acetyl-CoA carboxylase and concomitantly inhibited the differentiation of 3T3-L1 cells in a dose-dependent manner. Treatment with chloroacetylated biotin blocked the induction of PPARgamma, STAT1, and STAT5A expression that normally occurs with adipogenesis. Moreover, addition of chloroacetylated biotin inhibited lipid accumulation, as judged by Oil Red O staining. Our results support recent studies that indicate that acetyl-CoA carboxylase may be a suitable target for an anti-obesity therapeutic.  相似文献   

14.
Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies   总被引:48,自引:0,他引:48  
Embryonic stem cells (ESC) have been established previously from the inner cell mass cells of mouse blastocysts. In suspension culture, they spontaneously differentiate to blood-island-containing cystic embryoid bodies (CEB). The development of blood vessels from in situ differentiating endothelial cells of blood islands, a process which we call vasculogenesis, was induced by injecting ESC into the peritoneal cavity of syngeneic mice. In the peritoneum, fusion of blood islands and formation of an in vivo-like primary capillary plexus occurred. Transplantation of ESC and ESC-derived complex and cystic embryoid bodies (ESC-CEB) onto the quail chorioallantoic membrane (CAM) induced an angiogenic response, which was directed by nonyolk sac endoderm structures. Neither yolk sac endoderm from ESC-CEB nor normal mouse yolk sac tissue induced angiogenesis on the quail CAM. Extracts from ESC-CEB stimulated the proliferation of capillary endothelial cells in vitro. Mitogenic activity increase during in vitro culture and differentiation of ESC. Almost all growth factor activity was associated with the cells. The ESC-CEB derived endothelial cell growth factor bound to heparin-sepharose. The identification of acidic fibroblast growth factor (FGF)in heparin-sepharose-purified material was accomplished by immunoblot experiments involving antibodies against acidic and basic FGF. We conclude that vasculogenesis, the development of blood vessels from in situ differentiating endothelial cells, and angiogenesis, the sprouting of capillaries from preexisting vessels are very early events during embryogenesis which can be studied using ESC differentiating in vitro. Our results suggest that vasculogenesis and angiogenesis are differently regulated.  相似文献   

15.
Transport of mitochondrial acetyl units to the cytoplasm for fatty acid synthesis via the citrate cleavage pathway requires replenishment of mitochondrial oxaloacetate. Pyruvate carboxylase is though to fulfill this role although compelling evidence has been lacking. During lipogenic differentiation of 3T3-L1 preadipocytes, pyruvate carboxylase activity rises 18-fold in close coordination with fat accumulation and the activity of ATP-citrate lyase, an established lipogenic enzyme. The activities of enzymes less directly related to lipogenesis rise only 3–5-fold while other unrelated enzymes do not increase significantly. These results indicate that pyruvate carboxylase is in fact a lipogenic enzyme.  相似文献   

16.
125I-Epidermal growth factor (EGF) binding capacity in fetal rat lung (FRL) cells is increased approximately 2 to 3-fold within 18 h of retinoic acid addition. Analysis of 125I-EGF binding assays at 0 C reveals approximately 25,000 receptors per cell, while analysis of growth factor binding to retinoic acid-treated cells demonstrates an increase in receptor levels to approximately 70,000 receptors per cell with no detectable changes in receptor affinities. We show by immunoprecipitation of 35S-methionine labeled EGF receptors that retinoic acid addition produces an increase in the accumulation of EGF receptor protein. Using brief pulses of 35S-methionine, an increase in EGF receptor synthesis can be identified within 3 h after retinoic acid addition. These results are the first to demonstrate that a retinoic acid-induced increase in 125I-EGF binding capacity is due to increased EGF receptor protein synthesis. Also, we find that a transient decrease in the rate of EGF receptor turnover occurs when retinoic acid is initially added to FRL cells. On the basis of our data, we conclude that the retinoic acid-induced accumulation of EGF receptors in FRL cells is primarily due to increased receptor synthesis. The effect of retinoic acid on EGF receptor turnover may be a secondary factor, influencing the rate at which receptors accumulate.  相似文献   

17.
Acetyl-CoA Carboxylase 1 catalyzes the conversion of acetyl-CoA to malonyl-CoA, the committed step of de novo fatty acid synthesis. As a master regulator of lipid synthesis, acetyl-CoA carboxylase 1 has been proposed to be a therapeutic target for numerous metabolic diseases. We have shown that acetyl-CoA carboxylase 1 activity is reduced in the absence of the lysine acetyltransferase NuA4 in Saccharomyces cerevisiae. This change in acetyl-CoA carboxylase 1 activity is correlated with a change in localization. In wild-type cells, acetyl-CoA carboxylase 1 is localized throughout the cytoplasm in small punctate and rod-like structures. However, in NuA4 mutants, acetyl-CoA carboxylase 1 localization becomes diffuse. To uncover mechanisms regulating acetyl-CoA carboxylase 1 localization, we performed a microscopy screen to identify other deletion mutants that impact acetyl-CoA carboxylase 1 localization and then measured acetyl-CoA carboxylase 1 activity in these mutants through chemical genetics and biochemical assays. Three phenotypes were identified. Mutants with hyper-active acetyl-CoA carboxylase 1 form 1 or 2 rod-like structures centrally within the cytoplasm, mutants with mid-low acetyl-CoA carboxylase 1 activity displayed diffuse acetyl-CoA carboxylase 1, while the mutants with the lowest acetyl-CoA carboxylase 1 activity (hypomorphs) formed thick rod-like acetyl-CoA carboxylase 1 structures at the periphery of the cell. All the acetyl-CoA carboxylase 1 hypomorphic mutants were implicated in sphingolipid metabolism or very long-chain fatty acid elongation and in common, their deletion causes an accumulation of palmitoyl-CoA. Through exogenous lipid treatments, enzyme inhibitors, and genetics, we determined that increasing palmitoyl-CoA levels inhibits acetyl-CoA carboxylase 1 activity and remodels acetyl-CoA carboxylase 1 localization. Together this study suggests yeast cells have developed a dynamic feed-back mechanism in which downstream products of acetyl-CoA carboxylase 1 can fine-tune the rate of fatty acid synthesis.  相似文献   

18.
Tissue differentiation in ascitic teratocarcinoma embryoid bodies (EBs) was investigated in the lung colony system of syngeneic 129/Sv and allogeneic Balb/c mice previously reported by us. In this report, tissues are classified as neural, epithelial and mesodermal tissues. Although multiple differentiation in these three groups of tissues became evident about a month following an injection of EBs, colonies containing only one type of tissue but not mesodermal were commonly found. There were few colonies containing only mesodermal or both neural and mesodermal tissues. This suggests that mesodermal tissue differentiation takes place, as in normal embryogenesis, through the formation of a mesodermal layer, which has not been found in vivo.  相似文献   

19.
Teratocarcinoma stem cells can be used to study certain events occurring during early mouse embryogenesis. We report that the outgrowth of parietal endoderm from teratocarcinoma stem-cell embryoid bodies in vitro is analogous to the same process in vivo in terms of the spatial distribution of endoderm types: only parietal endoderm migrates away from the aggregate, whereas visceral endoderm remains associated with the embryoid body. The outgrowths generated on a substrate of type-I collagen from PSA-1 and retinoic-acid-treated F 9 embryoid bodies were found to be comparable, even though these aggregates express different endoderm types. We demonstrated that retinoic-acid-treated F 9 embryoid bodies that contain essentially only visceral endoderm in suspension culture can nonetheless generate parietal-endoderm outgrowth when plated on type-I collagen, suggesting that substrate interaction plays an important role in inducing parietal-endoderm differentiation. These data indicate the usefulness and relevance of studying endoderm differentiation and outgrowth in vitro employing the teratocarcinoma model system.  相似文献   

20.
We have established conditions to efficiently differentiate embryonic carcinoma stem cells of the line P19 into myogenic cells. As inducers for differentiation, a combination of embryoid body formation in conjunction with treatment with dimethyl sulfoxide and retinoic acid proved to be most efficient. Under these conditions we detected an accumulation of myosin- and actin-specific RNA. Also, large amounts of type IV collagen RNA were produced. Type IV collagen is a component of the muscle basement membrane. In analogy to the F-9 system, we found a drastic decrease in stable p53 mRNA under the differentiation conditions used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号