首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intestinal epithelial cells (IECs) have critical roles in maintaining homeostasis of intestinal epithelium. Endoplasmic reticulum (ER) stress is implicated in intestinal epithelium homeostasis and inflammatory bowel disease; however, it remains elusive whether IRE1α, a major sensor of ER stress, is directly involved in these processes. We demonstrate here that genetic ablation of Ire1α in IECs leads to spontaneous colitis in mice. Deletion of IRE1α in IECs results in loss of goblet cells and failure of intestinal epithelial barrier function. IRE1α deficiency induces cell apoptosis through induction of CHOP, the pro-apoptotic protein, and sensitizes cells to lipopolysaccharide, an endotoxin from bacteria. IRE1α deficiency confers upon mice higher susceptibility to chemical-induced colitis. These results suggest that IRE1α functions to maintain the intestinal epithelial homeostasis and plays an important role in defending against inflammation bowel diseases.  相似文献   

2.
Genome-wide association studies (GWAS) linking polymorphisms in ATG16L1 with susceptibility to inflammatory bowel disease (IBD) have prompted mucosal immunologists to investigate the functional roles of macroautophagy/autophagy in different cell types in the gut. Here we present a recent study that addressed 2 key questions: in which cell type is autophagy deficiency most detrimental during chronic colitis and what is the functional role of autophagy in those cells? We report that autophagy in intestinal epithelial cells (IECs) acts to limit intestinal inflammation by protecting them from TNF-induced apoptosis and we discuss the potential implications for IBD treatment.  相似文献   

3.
Dysregulated phosphatidylinositol (PI) signaling has been implicated in human gastrointestinal (GI) malignancies and inflammatory states, underlining the need to study pathophysiological roles of PI in an in vivo genetic model. Here, we study the significance of PI in GI pathophysiology using the zebrafish mutant cdipthi559, which lacks PI synthesis, and unravel a crucial role of PI in intestinal mucosal integrity and inflammation. The cdipthi559 mutants exhibit abnormal villous architecture and disorganized proliferation of intestinal epithelial cells (IECs), with pathologies reminiscent of inflammatory bowel disease (IBD), including apoptosis of goblet cells, abnormal mucosecretion, bacterial overgrowth and leukocyte infiltration. The mutant IECs exhibit vacuolation, microvillus atrophy and impaired proliferation. The cdipthi559 gene expression profile shows enrichment of acute phase response signaling, and the endoplasmic reticulum (ER) stress factors hspa5 and xbp1 are robustly activated in the mutant GI tissue. Temporal electron micrographic analyses reveal that PI-deficient IECs undergo sequential ER-Golgi disruption, mitochondrial depletion, macroautophagy and cell death, consistent with chronic ER-stress-mediated cytopathology. Furthermore, pharmacological induction of ER stress by inhibiting protein glycosylation or PI synthase inhibition in leukocyte-specific reporter lines replicates the cdipthi559 inflammatory phenotype, suggesting a fundamental role of PI metabolism and ER stress in mucosal inflammation. Antibiotics and anti-inflammatory drugs resolved the inflammation, but not the autophagic necroapoptosis of IECs, suggesting that bacterial overgrowth can exacerbate ER stress pathology, whereas persistent ER stress is sufficient to trigger inflammation. Interestingly, the intestinal phenotype was partially alleviated by chemical chaperones, suggesting their therapeutic potential. Using zebrafish genetic and pharmacological models, this study demonstrates a newly identified link between intracellular PI signaling and ER-stress-mediated mucosal inflammation. The zebrafish cdipt mutants provide a powerful tool for dissecting the fundamental mechanisms of ER-stress-mediated human GI diseases and a platform to develop molecularly targeted therapies.KEY WORDS: Cdipt, Phosphoinositides, IBD, UPR  相似文献   

4.
5.

Background

MUC2 mucin produced by intestinal goblet cells is the major component of the intestinal mucus barrier. The inflammatory bowel disease ulcerative colitis is characterized by depleted goblet cells and a reduced mucus layer, but the aetiology remains obscure. In this study we used random mutagenesis to produce two murine models of inflammatory bowel disease, characterised the basis and nature of the inflammation in these mice, and compared the pathology with human ulcerative colitis.

Methods and Findings

By murine N-ethyl-N-nitrosourea mutagenesis we identified two distinct noncomplementing missense mutations in Muc2 causing an ulcerative colitis-like phenotype. 100% of mice of both strains developed mild spontaneous distal intestinal inflammation by 6 wk (histological colitis scores versus wild-type mice, p < 0.01) and chronic diarrhoea. Monitoring over 300 mice of each strain demonstrated that 25% and 40% of each strain, respectively, developed severe clinical signs of colitis by age 1 y. Mutant mice showed aberrant Muc2 biosynthesis, less stored mucin in goblet cells, a diminished mucus barrier, and increased susceptibility to colitis induced by a luminal toxin. Enhanced local production of IL-1β, TNF-α, and IFN-γ was seen in the distal colon, and intestinal permeability increased 2-fold. The number of leukocytes within mesenteric lymph nodes increased 5-fold and leukocytes cultured in vitro produced more Th1 and Th2 cytokines (IFN-γ, TNF-α, and IL-13). This pathology was accompanied by accumulation of the Muc2 precursor and ultrastructural and biochemical evidence of endoplasmic reticulum (ER) stress in goblet cells, activation of the unfolded protein response, and altered intestinal expression of genes involved in ER stress, inflammation, apoptosis, and wound repair. Expression of mutated Muc2 oligomerisation domains in vitro demonstrated that aberrant Muc2 oligomerisation underlies the ER stress. In human ulcerative colitis we demonstrate similar accumulation of nonglycosylated MUC2 precursor in goblet cells together with ultrastructural and biochemical evidence of ER stress even in noninflamed intestinal tissue. Although our study demonstrates that mucin misfolding and ER stress initiate colitis in mice, it does not ascertain the genetic or environmental drivers of ER stress in human colitis.

Conclusions

Characterisation of the mouse models we created and comparison with human disease suggest that ER stress-related mucin depletion could be a fundamental component of the pathogenesis of human colitis and that clinical studies combining genetics, ER stress-related pathology and relevant environmental epidemiology are warranted.  相似文献   

6.
Recent evidence suggests that endoplasmic reticulum (ER) stress plays a vital role in inflammatory bowel disease (IBD). Therefore, the aim of this study was to investigate the mechanism by which ER stress promotes inflammatory response in IBD. The expression of Gro-α, IL-8 and ER stress indicator Grp78 in colon tissues from patients with Crohn’s disease (CD) and colonic carcinoma was analyzed by immunohistochemistry staining. Colitis mouse model was established by the induction of trinitrobenzene sulphonic acid (TNBS), and the mice were treated with ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Then the body weight, colon length and colon inflammation were evaluated, and Grp78 and Gro-α in colon tissues were detected by immunohistochemistry. Epithelial cells of colon cancer HCT116 cells were treated with tunicamycin to induce ER stress. Grp78 was detected by Western blot, and chemokines were measured by PCR and ELISA. The expression levels of Grp78, Gro-α and IL-8 were significantly upregulated in intestinal tissues of CD patients. Mice with TNBS induced colitis had increased expression of Grp78 and Gro-α in colonic epithelia. TUDCA reduced the severity of TNBS-induced colitis. In HCT116 cells, tunicamycin increased the expression of Grp78, Gro-α and IL-8 in a concentration-dependent manner. Furthermore, p38 MAPK inhibitor significantly inhibited the upregulation of Gro-α and IL-8 induced by tunicamycin. In conclusion, ER stress promotes inflammatory response in IBD, and the effects may be mediated by the activation of p38 MAPK signaling pathway.Key words: Inflammatory bowel disease, endoplasmic reticulum stress, IL-8, Gro-α, p38 MAPK  相似文献   

7.
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. It is unknown whether β-1,3;1,6-glucan can induce immune suppressive effects. Here, we study intestinal anti-inflammatory activity of Lentinula edodes-derived β-1,3;1,6-glucan, which is known as lentinan. Dextran sulfate sodium (DSS)-induced colitis mice were used to elucidate effects of lentinan in vivo. In the cellular level assessment, lentinan was added into a co-culture model consisting of intestinal epithelial Caco-2 cells and LPS-stimulated macrophage RAW264.7 cells. Ligated intestinal loop assay was performed for assessing effects of lentinan on intestinal epithelial cells (IECs) in vivo. Oral administration of lentinan (100 µg/mouse) significantly ameliorated DSS-induced colitis in body weight loss, shortening of colon lengths, histological score, and inflammatory cytokine mRNA expression in inflamed tissues. Lentinan reduced interleukin (IL)-8 mRNA expression and nuclear factor (NF)-κB activation in Caco-2 cells without decreasing of tumor necrosis factor (TNF)-α production from RAW264.7 cells. Flow cytometric analysis revealed that surface levels of TNF receptor (TNFR) 1 were decreased by lentinan treatment. A clathrin-mediated endocytosis inhibitor, monodansylcadaverine, canceled lentinan inhibition of IL-8 mRNA expression. Moreover, lentinan inhibited TNFR1 expression in Caco-2 cells in both protein and mRNA level. Lentinan also inhibited TNFR1 mRNA expression in mouse IECs. These results suggest that lentinan exhibits intestinal anti-inflammatory activity through inhibition of IL-8 mRNA expression associated with the inhibition of NF-κB activation which is triggered by TNFR1 endocytosis and lowering of their expression in IECs. Lentinan may be effective for the treatment of gut inflammation including IBD.  相似文献   

8.
The intestinal tract is covered by a total of 300 square metres of IECs (intestinal epithelial cells) that covers the entire intestinal mucosa. For protection against luminal xenobiotics, pathogens and commensal microbes, these IECs are equipped with membrane-bound transporters as well as the ability to secrete specific protective proteins. In patients with active IBD (inflammatory bowel disease), the expression of these proteins, e.g. ABC (ATP-binding cassette) transporters such as ABCG2 (ABC transporter G2) and defensins, is decreased, thereby limiting the protection against various luminal threats. Correct ER (endoplasmic reticulum)-dependent protein folding is essential for the localization and function of secreted and membrane-bound proteins. Inflammatory triggers, such as cytokines and nitric oxide, can impede protein folding, which causes the accumulation of unfolded proteins inside the ER. As a result, the unfolded protein response is activated which can lead to a cellular process named ER stress. The protein folding impairment affects the function and localization of several proteins, including those involved in protection against xenobiotics. In the present review, we discuss the possible inflammatory pathways affecting protein folding and eventually leading to IEC malfunction in patients with active IBD.  相似文献   

9.
The intestinal immune system is constantly challenged by commensal bacteria; therefore, it must maintain quiescence via several regulatory mechanisms. Although intestinal macrophages (Ms) have been implicated in repression of excessive inflammation, it remains unclear how their functions are regulated during inflammation. In this study, we report that semaphorin 7A (Sema7A), a GPI-anchored semaphorin expressed in intestinal epithelial cells (IECs), induces IL-10 production by intestinal M?s to regulate intestinal inflammation. Sema7A-deficient mice showed severe signs of dextran sodium sulfate-induced colitis due to reduced intestinal IL-10 levels. We further identified CX3CR1(+)MHC class II(int)F4/80(hi)CD11b(hi) M?s as the main producers of IL-10 via αvβ1 integrin in response to Sema7A. Notably, Sema7A was predominantly expressed on the basolateral side of IECs, and its expression pattern was responsible for protective effects against dextran sodium sulfate-induced colitis and IL-10 production by M?s during interactions between IECs and M?s. Furthermore, we determined that the administration of recombinant Sema7A proteins ameliorated the severity of colitis, and these effects were diminished by IL-10-blocking Abs. Therefore, our findings not only indicate that Sema7A plays crucial roles in suppressing intestinal inflammation through αvβ1 integrin, but also provide a novel mode of IL-10 induction via interactions between IECs and M?s.  相似文献   

10.
Inflammatory bowel disease (IBD) is driven by multiple genetic and environmental risk factors. Patients with mutations in Bruton’s tyrosine kinase (BTK) is known to manifest high prevalence of intestinal disorders including IBD. Although BTK mediates the signaling of various immune receptors, little is known how BTK maintains the homeostasis of the gut immune system. Here, we show that BTK-deficiency promotes IBD progression in a mouse model of colitis. Interestingly, the increased colitis susceptibility of BTK-deficient mice is not caused by gut microbiota changes but rather arises from enhanced pro-inflammatory Th1 response. More importantly, we find the heightened Th1 response in BTK-deficient mice to result from both T cell-extrinsic and -intrinsic mechanisms. BTK-deficient dendritic cells secret elevated levels of the Th1-polarizing cytokine IL-12 and BTK-deficient T cells are inherently more prone to Th1 differentiation. Thus, BTK plays critical roles in maintaining gut immune homeostasis and preventing inflammation via regulating T-cell polarization.Subject terms: Inflammatory bowel disease, Inflammation, Mucosal immunology, Inflammation  相似文献   

11.
Endoplasmic reticulum (ER) stress is widely implicated in various pathological conditions such as diabetes. Previously, we reported that enhanced ER stress contributes to inflammation and vascular damage in diabetic and ischemia-induced retinopathy. However, the exact role of the signaling pathways activated by ER stress in vascular inflammation remains poorly understood. In the present study, we investigated the role of X-box binding protein 1 (XBP1) in retinal adhesion molecule expression, leukostasis, and vascular leakage. Exposure of human retinal endothelial cells to low dose ER stress inducers resulted in a robust activation of XBP1 but did not affect inflammatory gene expression. However, ER stress preconditioning almost completely abolished TNF-α-elicited NF-κB activation and adhesion molecule ICAM-1 and VCAM-1 expression. Pharmaceutical inhibition of XBP1 activation or knockdown of XBP1 by siRNA markedly attenuated the effects of preconditioning on inflammation. Moreover, loss of XBP1 led to an increase in ICAM-1 and VCAM-1 expression. Conversely, overexpression of spliced XBP1 attenuated TNF-α-induced phosphorylation of IKK, IκBα, and NF-κB p65, accompanied by decreased NF-κB activity and reduced adhesion molecule expression. Finally, in vivo studies show that activation of XBP1 by ER stress preconditioning prevents TNF-α-induced ICAM-1 and VCAM-1 expression, leukostasis, and vascular leakage in mouse retinas. These results collectively indicate a protective effect of ER stress preconditioning against retinal endothelial inflammation, which is likely through activation of XBP1-mediated unfolded protein response (UPR) and inhibition of NF-κB activation.  相似文献   

12.
Data from animal models and human inflammatory bowel diseases have implicated the ER (endoplasmic reticulum) stress pathway in intestinal inflammation. We have characterized the development of inflammation in Winnie mice in which ER stress arises due to a single missense mutation in the MUC2 mucin produced by intestinal goblet cells. This model has allowed us to explore the genesis of inflammation ensuing from a single gene polymorphism affecting secretory cells. In these mice, a proportion of MUC2 misfolds during biosynthesis, leading to ER stress and activation of the unfolded protein response. Winnie mice develop spontaneous complex progressive inflammation that is most severe in the distal colon. Inflammation involves TH1, TH2 and TH17 T-cells, with a progressive development of a TH17-dominated response, but also involves innate immunity, in a pattern not dissimilar to human colitis. Experimental inhibition of tolerance in this model severely exacerbates colitis, demonstrating active effective suppression of inflammation. Even though the misfolding of MUC2 is a consequence of an inherited mutation, as inflammation develops, the molecular markers of ER stress increase further and goblet cell pathology becomes worse, suggesting that inflammation itself exacerbates ER stress.  相似文献   

13.
LP Hale  PK Greer 《PloS one》2012,7(7):e41797
Mutations that increase susceptibility to inflammatory bowel disease (IBD) have been identified in a number of genes in both humans and mice, but the factors that govern how these mutations contribute to IBD pathogenesis and result in phenotypic presentation as ulcerative colitis (UC) or Crohn disease (CD) are not well understood. In this study, mice deficient in both TNF and IL-10 (T/I mice) were found to spontaneously develop severe colitis soon after weaning, without the need for exogenous triggers. Colitis in T/I mice had clinical and histologic features similar to human UC, including a markedly increased risk of developing inflammation-associated colon cancer. Importantly, development of spontaneous colitis in these mice was prevented by antibiotic treatment. Consistent with the known role of Th17-driven inflammation in response to bacteria, T/I mice had elevated serumTh17-type cytokines when they developed spontaneous colitis and after systemic bacterial challenge via NSAID-induced degradation of the mucosal barrier. Although TNF production has been widely considered to be be pathogenic in IBD, these data indicate that the ability to produce normal levels of TNF actually protects against the spontaneous development of colitis in response to intestinal colonization by bacteria. The T/I mouse model will be useful for developing new rationally-based therapies to prevent and/or treat IBD and inflammation-associated colon cancer and may further provide important insights into the pathogenesis of UC in humans.  相似文献   

14.
Previous studies have suggested that intestinal epithelial cells (IECs) have the capacity to function as nonprofessional antigen presenting cells that in the normal state preferentially activate CD8+ T cells. However, under pathological conditions, such as those found in inflammatory bowel disease (IBD), persistent activation of CD4+ T cells is seen. The aim of this study was to determine whether the IBD IECs contribute to CD4+ T cell activation. Freshly isolated human IECs were obtained from surgical specimens of patients with or without IBD and cocultured with autologous or allogeneic peripheral blood T lymphocytes. Cocultures of normal T cells and IECs derived from IBD patients resulted in the preferential activation of CD4+ T cell proliferation that was associated with significant IFN-gamma, but not IL-2, secretion. Cytokine secretion and CD4+ T cell proliferation was inhibited by pretreatment of the IBD IECs with the anti-DR MAb L243. In contrast, normal IECs stimulated the proliferation and cytokine secretion by CD4+ T cells to a significantly lesser degree than IBD IECs. Furthermore, blockade of human leukocyte antigen-DR had a lesser effect in the normal IEC-CD4+ T cell cocultures. We conclude that IECs can contribute to the ongoing CD4+ T cell activation seen in IBD. We suggest that the apparent differences between the secreted levels of IFN-gamma indicate that it may play a dual role in intestinal homeostasis, in which low levels contribute to physiological inflammation whereas higher levels are associated with an uncontrolled inflammatory state.  相似文献   

15.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the rectum which progressively extents. Its etiology remains unknown and the number of treatments available is limited. Studies of UC patients have identified an unbalanced endoplasmic reticulum (ER) stress in the non-inflamed colonic mucosa. Animal models with impaired ER stress are sensitive to intestinal inflammation, suggesting that an unbalanced ER stress could cause inflammation. However, there are no ER stress-regulating strategies proposed in the management of UC partly because of the lack of relevant preclinical model mimicking the disease. Here we generated the IL10/Nox1dKO mouse model which combines immune dysfunction (IL-10 deficiency) and abnormal epithelium (NADPH oxidase 1 (Nox1) deficiency) and spontaneously develops a UC-like phenotype with similar complications (colorectal cancer) than UC. Our data identified an unanticipated combined role of IL10 and Nox1 in the fine-tuning of ER stress responses in goblet cells. As in humans, the ER stress was unbalanced in mice with decreased eIF2α phosphorylation preceding inflammation. In IL10/Nox1dKO mice, salubrinal preserved eIF2α phosphorylation through inhibition of the regulatory subunit of the protein phosphatase 1 PP1R15A/GADD34 and prevented colitis. Thus, this new experimental model highlighted the central role of epithelial ER stress abnormalities in the development of colitis and defined the defective eIF2α pathway as a key pathophysiological target for UC. Therefore, specific regulators able to restore the defective eIF2α pathway could lead to the molecular remission needed to treat UC.  相似文献   

16.
The unfolded protein response (UPR) is a signaling pathway from the endoplasmic reticulum (ER) to the nucleus that protects cells from the stress caused by misfolded or unfolded proteins [1, 2]. As such, ER stress is an ongoing challenge for all cells given the central biologic importance of secretion as part of normal physiologic functions. This is especially the case for cells that are highly dependent upon secretory function as part of their major duties. Within mucosal tissues, the intestinal epithelium is especially dependent upon an intact UPR for its normal activities [3]. This review will discuss the UPR and the special role that it provides in the functioning of the intestinal epithelium and, when dysfunctional, its implications for understanding mucosal homeostasis and intestinal inflammation, as occurs in inflammatory bowel disease (IBD).  相似文献   

17.
Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4+ T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4+ T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4+ T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4+ T cells and forkhead box P3 (FoxP3)+ regulatory T (Treg) cells. IFN-γ produced mainly by CD4+ T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.  相似文献   

18.
19.
20.
Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that affects millions of people worldwide. Although the etiology of IBD is not clear, it is known that products from stressed cells and enteric microbes promote intestinal inflammation. High mobility group box 1 (HMGB1), originally identified as a nuclear DNA binding protein, is a cytokine-like protein mediator implicated in infection, sterile injury, autoimmune disease, and IBD. Elevated levels of HMGB1 have been detected in inflamed human intestinal tissues and in feces of IBD patients and mouse models of colitis. Neutralizing HMGB1 activity by administration of anti-HMGB1 antibodies or HMGB1-specific antagonist improves clinical outcomes in animal models of colitis. Since HMGB1 binds to DNA with high affinity, here we developed a novel strategy to sequester HMGB1 using DNA immobilized on sepharose beads. Screening of DNA-bead constructs revealed that B2 beads, one linear form of DNA conjugated beads, bind HMGB1 with high affinity, capture HMGB1 ex vivo from endotoxin-stimulated RAW 264.7 cell supernatant and from feces of mice with colitis. Oral administration of B2 DNA beads significantly improved body weight, reduced colon injury, and suppressed colonic and circulating cytokine levels in mice with spontaneous colitis (IL-10 knockout) and with dextran sulfate sodium-induced colitis. Thus, DNA beads reduce inflammation by sequestering HMGB1 and may have therapeutic potential for the treatment of IBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号