首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil microorganisms mediate many critical ecosystem processes. Little is known, however, about the factors that determine soil microbial community composition, and whether microbial community composition influences process rates. Here, we investigated whether aboveground plant diversity affects soil microbial community composition, and whether differences in microbial communities in turn affect ecosystem process rates. Using an experimental system at La Selva Biological Station, Costa Rica, we found that plant diversity (plots contained 1, 3, 5, or > 25 plant species) had a significant effect on microbial community composition (as determined by phospholipid fatty acid analysis). The different microbial communities had significantly different respiration responses to 24 labile carbon compounds. We then tested whether these differences in microbial composition and catabolic capabilities were indicative of the ability of distinct microbial communities to decompose different types of litter in a fully factorial laboratory litter transplant experiment. Both microbial biomass and microbial community composition appeared to play a role in litter decomposition rates. Our work suggests, however, that the more important mechanism through which changes in plant diversity affect soil microbial communities and their carbon cycling activities may be through alterations in their abundance rather than their community composition.  相似文献   

2.
The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape‐scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community‐weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial‐dominated microbial communities were associated with exploitative plant traits versus fungal‐dominated communities with resource‐conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.  相似文献   

3.
Knowledge of microbial communities and their inherent heterogeneity has dramatically increased with the widespread use of high-throughput sequencing technologies, and we are learning more about the ecological processes that structure microbial communities across a wide range of environments, as well as the relative scales of importance for describing bacterial communities in natural systems. Little work has been carried out to assess fine-scale eukaryotic microbial heterogeneity in soils. Here, we present findings from a bar-coded 18S rRNA survey of the eukaryotic microbial communities in a previously unstudied geothermal diatomaceous biological soil crust in Yellowstone National Park, WY, USA, in which we explicitly compare microbial community heterogeneity at the particle scale within soil cores. Multivariate analysis of community composition showed that while subsamples from within the same soil core clustered together, community dissimilarity between particles in the same core was high. This study describes a novel soil microbial environment and also adds to our growing understanding of microbial heterogeneity and the scales relevant to the study of soil microbial communities.  相似文献   

4.
Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community''s previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications.  相似文献   

5.
The gastrointestinal (GI) tract is home to trillions of microbes. Within the same GI tract, substantial differences in the bacterial species that inhabit the oral cavity and intestinal tract have been noted. While the influence of host environments and nutritional availability in shaping different microbial communities is widely accepted, we hypothesize that the existing microbial flora also plays a role in selecting the bacterial species that are being integrated into the community. In this study, we used cultivable microbial communities isolated from different parts of the GI tract of mice (oral cavity and intestines) as a model system to examine this hypothesis. Microbes from these two areas were harvested and cultured using the same nutritional conditions, which led to two distinct microbial communities, each with about 20 different species as revealed by PCR-based denaturing gradient gel electrophoresis analysis. In vitro community competition assays showed that the two microbial floras exhibited antagonistic interactions toward each other. More interestingly, all the original isolates tested and their closely related species displayed striking community preferences: They persisted when introduced into the bacterial community of the same origin, while their viable count declined more than three orders of magnitude after 4 days of coincubation with the microbial flora of foreign origin. These results suggest that an existing microbial community might impose a selective pressure on incoming foreign bacterial species independent of host selection. The observed inter-flora interactions could contribute to the protective effect of established microbial communities against the integration of foreign bacteria to maintain the stability of the existing communities.  相似文献   

6.
1. Leaves that fall into the water represent a new habitat for microorganisms to colonise in streams, providing an opportunity to study colonisation and the subsequent regulation of community structure. We explored community composition of bacteria and fungi on decomposing alder leaves in nine streams in central Sweden, and describe their relationship with environmental variables. Succession of the microbial community was studied in one of the streams for 118 days. Microbial community composition was examined by denaturing gradient gel electrophoresis on replicate samples of leaves from each stream. 2. During succession in one stream, maximum taxon richness was reached after 34 days for bacteria and 20 days for fungi respectively. Replicate samples within this stream differed between each other earlier in colonisation, while subsequently such variation among replicate communities was low and remained stable for several weeks. Replicate samples taken from all the nine streams after 34 days of succession showed striking similarities in microbial communities within‐streams, although communities differed more strongly between streams. 3. Canonical analysis of microbial communities and environmental variables revealed that water chemistry had a significant influence on community composition. This influence was superimposed on a statistical relationship between the properties of stream catchments and microbial community composition. 4. The catchment regulates microbial communities in two different ways. It harbours the species pool from which the in‐stream microbial community is drawn and it governs stream chemistry and the composition of organic substrates that further shape the communities. We suggest that there is a random element to colonisation early in succession, whereas other factors such as species interactions, stream chemistry and organic substrate properties, result in a more deterministic regulation of communities during later stages.  相似文献   

7.
? Below-ground microbial communities influence plant diversity, plant productivity, and plant community composition. Given these strong ecological effects, are interactions with below-ground microbes also important for understanding natural selection on plant traits? ? Here, we manipulated below-ground microbial communities and the soil moisture environment on replicated populations of Brassica rapa to examine how microbial community structure influences selection on plant traits and mediates plant responses to abiotic environmental stress. ? In soils with experimentally simplified microbial communities, plants were smaller, had reduced chlorophyll content, produced fewer flowers, and were less fecund when compared with plant populations grown in association with more complex soil microbial communities. Selection on plant growth and phenological traits also was stronger when plants were grown in simplified, less diverse soil microbial communities, and these effects typically were consistent across soil moisture treatments. ? Our results suggest that microbial community structure affects patterns of natural selection on plant traits. Thus, the below-ground microbial community can influence evolutionary processes, just as recent studies have demonstrated that microbial diversity can influence plant community and ecosystem processes.  相似文献   

8.
Broad-scale approaches seek to integrate information on whole microbial communities. It is widely recognized that culture techniques are too selective and unrepresentative to allow a realistic assessment of the overall structure of microbial communities. Techniques based on fatty acid or metabolic profiles determine the phenotypic composition of the community. Complementary information about the genotypic structure of soil microbial communities necessitates analysis of community DNA. To determine broad-scale differences in soil microbial community structure (i.e., differences at the whole community level, rather than specific differences in species composition), we have applied a community hybridization technique to determine the similarity and relative diversity of two samples by cross hybridization. In previous studies this assay failed with whole-soil community DNA. Usable hybridization signals were obtained using whole-soil DNA, in this study, by digesting the DNA with restriction enzymes before the labeling with a random-primer reaction. The community hybridization technique was tested using a graded series of microbial fractions, increasing in complexity, all isolated from the same soil sample. This demonstrated that single bacterial species and a mixture of cultivable bacteria were less complex and only 5% similar to whole-community DNA or bacteria directly extracted from the soil. Extracted bacterial and whole-community DNA were 75% similar to each other and equally complex. When DNA was extracted from four different agricultural soils, their similarities ranged from 35 to 75%. The potential usefulness of community hybridization applied to soil microbial communities is discussed.  相似文献   

9.
Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA). Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function.  相似文献   

10.
Species diversity and the structure of microbial communities in soils are thought to be a function of the cumulative selective pressures within the local environment. Shifts in microbial community structure, as a result of metal stress, may have lasting negative effects on soil ecosystem dynamics if critical microbial community functions are compromised. Three soils in the vicinity of a copper smelter, previously contaminated with background, low and high levels of aerially deposited metals, were amended with metal-salts to determine the potential for metal contamination to shape the structural and functional diversity of microbial communities in soils. We hypothesized that the microbial communities native to the three soils would initially be unique to each site, but would converge on a microbial community with similar structure and function, as a result of metal stress. Initially, the three different sites supported microbial communities with unique structural and functional diversity, and the nonimpacted site supported inherently higher levels of microbial activity and biomass, relative to the metal-contaminated sites. Amendment of the soils with metal-salts resulted in a decrease in microbial activity and biomass, as well as shifts in microbial community structure and function at each site. Soil microbial communities from each site were also observed to be sensitive to changes in soil pH as a result of metal-salt amendment; however, the magnitude of these pH-associated effects varied between soils. Microbial communities from each site did not converge on a structurally or functionally similar community following metal-salt amendment, indicating that other factors may be equally important in shaping microbial communities in soils. Among these factors, soil physiochemical parameters like organic matter and soil pH, which can both influence the bioavailability and toxicity of metals in soils, may be critical.  相似文献   

11.
The introduction of transgenic plants into agricultural ecosystems has raised the question of the ecological impact of these plants on nontarget organisms, such as soil bacteria. Although differences in both the genetic structure and the metabolic function of the microbial communities associated with some transgenic plant lines have been established, it remains to be seen whether these differences have an ecological impact on the soil microbial communities. We conducted a 2-year, multiple-site field study in which rhizosphere samples associated with a transgenic canola variety and a conventional canola variety were sampled at six times throughout the growing season. The objectives of this study were to identify differences between the rhizosphere microbial community associated with the transgenic plants and the rhizosphere microbial community associated with the conventional canola plants and to determine whether the differences were permanent or depended on the presence of the plant. Community-level physiological profiles, fatty acid methyl ester profiles, and terminal amplified ribosomal DNA restriction analysis profiles of rhizosphere microbial communities were compared to the profiles of the microbial community associated with an unplanted, fallow field plot. Principal-component analysis showed that there was variation in the microbial community associated with both canola variety and growth season. Importantly, while differences between the microbial communities associated with the transgenic plant variety were observed at several times throughout the growing season, all analyses indicated that when the microbial communities were assessed after winter, there were no differences between microbial communities from field plots that contained harvested transgenic canola plants and microbial communities from field plots that did not contain plants during the field season. Hence, the changes in the microbial community structure associated with genetically modified plants were temporary and did not persist into the next field season.  相似文献   

12.
The introduction of transgenic plants into agricultural ecosystems has raised the question of the ecological impact of these plants on nontarget organisms, such as soil bacteria. Although differences in both the genetic structure and the metabolic function of the microbial communities associated with some transgenic plant lines have been established, it remains to be seen whether these differences have an ecological impact on the soil microbial communities. We conducted a 2-year, multiple-site field study in which rhizosphere samples associated with a transgenic canola variety and a conventional canola variety were sampled at six times throughout the growing season. The objectives of this study were to identify differences between the rhizosphere microbial community associated with the transgenic plants and the rhizosphere microbial community associated with the conventional canola plants and to determine whether the differences were permanent or depended on the presence of the plant. Community-level physiological profiles, fatty acid methyl ester profiles, and terminal amplified ribosomal DNA restriction analysis profiles of rhizosphere microbial communities were compared to the profiles of the microbial community associated with an unplanted, fallow field plot. Principal-component analysis showed that there was variation in the microbial community associated with both canola variety and growth season. Importantly, while differences between the microbial communities associated with the transgenic plant variety were observed at several times throughout the growing season, all analyses indicated that when the microbial communities were assessed after winter, there were no differences between microbial communities from field plots that contained harvested transgenic canola plants and microbial communities from field plots that did not contain plants during the field season. Hence, the changes in the microbial community structure associated with genetically modified plants were temporary and did not persist into the next field season.  相似文献   

13.
土壤微生物是生态系统维持正常结构与功能的重要组成部分,为探究盐城滩涂典型湿地土壤微生物群落结构特征,以江苏盐城滩涂互花米草、藨草、盐地碱蓬、芦苇及淤泥质光滩5种典型群落为对象,采用16S rRNA高通量测序技术分析0—10 cm(表层)、10—30 cm(中层)、30—60 cm(深层)土壤微生物多样性及群落结构。结果表明:(1)几种植物群落间,土壤微生物群落结构差异较大,主要体现在细菌群落结构的差异性,古菌群落结构差异相对较小。光滩与植物群落间,在土壤细菌种类及相对丰度上差异相对较大,互花米草群落与本土植物群落间,在微生物群落的细菌种类组成上存在较大差异;藨草群落土壤表层微生物群落结构与互花米草群落相似,深层与盐地碱蓬、芦苇群落相似。(2)同一群落不同层次土壤微生物群落结构相似,差异小于不同群落间土壤微生物群落的结构差异性;不同群落对应层次间,表深层土壤中五种群落土壤微生物多样性存在显著差异,中层土壤中五种群落微生物多样性差异不显著。总体上,植物群落类型对土壤微生物群落结构的影响大于土壤深度;与本土植物群落相比,互花米草群落土壤主要优势门微生物种类差异较小,但部分优势门微生物相对丰度...  相似文献   

14.
15.
This paper is the second in a pair investigating potential mechanisms for ecological regime change in salinising wetlands. The first paper in this series focused on the responses of the salt-tolerant submerged macrophyte community to salinity. In this second paper, we investigated some of the environmental conditions required for initiation and dominance of benthic microbial communities using a combination of experimental and observational data. Two experiments were carried out. One investigated the importance of prior establishment of benthic microbial communities on their ability to maintain prevalence over macrophyte colonisation (‘persistence’ experiment), while the other investigated hydrology and its effect on sediment perturbation, potential nutrient release and subsequent benthic microbial community establishment (‘flooding’ experiment). The ‘persistence’ experiment measured the biomass of benthic microbial communities and emergence of macrophytes from sediments kept either wet or dry for 4 weeks then flooded at a range of salinities. Benthic microbial biomass was similar across all of the salinities tested (15, 45 and 70 ppt), with a slight increase at higher salinities, suggesting that none of these limited benthic microbial community development. Pre-wetting of sediments usually increased benthic microbial community biomass and reduced macrophyte germination, but the latter was attributed to the presence of anoxic sediments rather than the increased benthic microbial community biomass. Germinating macrophytes emerged through benthic microbial communities or dense heterotrophic bacterial blooms, demonstrating that they could become dominant even when another community was already established. Field data supported these results, suggesting that the development of benthic microbial communities is not limited by salinity alone, but includes other factors, such as the water regime. In the ‘flooding’ experiment, the largest differences in nutrient concentrations ultimately lay between the pre-wet and pre-dry treatments (due to the greater release of nutrients and development of anoxia in the latter) rather than those subjected to fast versus slow flooding. In response to this, highest benthic microbial community biomass was in treatments with pre-wet sediment, corresponding with lower phytoplankton biomass.  相似文献   

16.
Rawls JF  Mahowald MA  Ley RE  Gordon JI 《Cell》2006,127(2):423-433
The gut microbiotas of zebrafish and mice share six bacterial divisions, although the specific bacteria within these divisions differ. To test how factors specific to host gut habitat shape microbial community structure, we performed reciprocal transplantations of these microbiotas into germ-free zebrafish and mouse recipients. The results reveal that communities are assembled in predictable ways. The transplanted community resembles its community of origin in terms of the lineages present, but the relative abundance of the lineages changes to resemble the normal gut microbial community composition of the recipient host. Thus, differences in community structure between zebrafish and mice arise in part from distinct selective pressures imposed within the gut habitat of each host. Nonetheless, vertebrate responses to microbial colonization of the gut are ancient: Functional genomic studies disclosed shared host responses to their compositionally distinct microbial communities and distinct microbial species that elicit conserved responses.  相似文献   

17.
Soil microbial communities are integrally involved in biogeochemical cycles and their activities are crucial to the productivity of terrestrial ecosystems. Despite the importance of soil microorganisms, little is known about the distribution of microorganisms in the soil or the manner in which microbial community structure responds to changes in land management. We investigated the structure of microbial communities in the soil over two years in a series of replicated plots, that included, cultivated fields, fields abandoned from cultivation and fields with no history of cultivation. Microbial community structure was examined by monitoring the relative abundance of ribosomal RNA (rRNA) from seven of the most common bacterial groups in soil (the Alpha and Beta Proteobacteria, Actinobacteria, Cytophagales, Planctomycetes, Verrucomicrobia and the Acidobacteria) and the Eukarya. These data reveal that soil microbial communities are dynamic, capable of significant change at temporal scales relative to seasonal events. However, despite temporal change in microbial community structure, the rRNA relative abundance of particular microbial groups is affected by the local environment such that recognizable patterns of community structure exist in relation to field management.  相似文献   

18.
Trait-based approaches are increasingly gaining importance in community ecology, as a way of finding general rules for the mechanisms driving changes in community structure and function under the influence of perturbations. Frameworks for life-history strategies have been successfully applied to describe changes in plant and animal communities upon disturbance. To evaluate their applicability to complex bacterial communities, we operated replicated wastewater treatment bioreactors for 35 days and subjected them to eight different disturbance frequencies of a toxic pollutant (3-chloroaniline), starting with a mixed inoculum from a full-scale treatment plant. Relevant ecosystem functions were tracked and microbial communities assessed through metagenomics and 16S rRNA gene sequencing. Combining a series of ordination, statistical and network analysis methods, we associated different life-history strategies with microbial communities across the disturbance range. These strategies were evaluated using tradeoffs in community function and genotypic potential, and changes in bacterial genus composition. We further compared our findings with other ecological studies and adopted a semi-quantitative competitors, stress-tolerants, ruderals (CSR) classification. The framework reduces complex data sets of microbial traits, functions and taxa into ecologically meaningful components to help understand the system response to disturbance and hence represents a promising tool for managing microbial communities.  相似文献   

19.
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454‐pyrosequencing to analyse the soil microbial community composition in a long‐term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.  相似文献   

20.

Background and aims

Climate change alters regional plant species distributions, creating new combinations of litter species and soil communities. Biogeographic patterns in microbial communities relate to dissimilarity in microbial community function, meaning novel litters to communities may decompose differently than predicted from their chemical composition. Therefore, the effect of a litter species in the biogeochemical cycle of its current environment may not predict patterns after migration. Under a tree migration sequence we test whether litter quality alone drives litter decomposition, or whether soil communities modify quality effects.

Methods

Litter and soils were sampled across an elevation gradient of different overstory species where lower elevation species are predicted to migrate upslope. We use a common garden, laboratory microcosm design (soil community x litter environment) with single and mixed-species litters.

Results

We find significant litter quality and microbial community effects (P?<?0.001), explaining 47 % of the variation in decomposition for mixed-litters.

Conclusion

Soil community effects are driven by the functional breadth, or historical exposure, of the microbial communities, resulting in lower decomposition of litters inoculated with upslope communities. The litter x soil community interaction suggests that litter decomposition rates in forests of changing tree species composition will be a product of both litter quality and the recipient soil community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号