首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The industrial production of short-chain fructooligosaccharides (FOS) and inulooligosaccharides is expanding rapidly due to the pharmaceutical importance of these compounds. These compounds, concisely termed prebiotics, have biofunctional properties and hence health benefits if consumed in recommended dosages. Prebiotics can be produced enzymatically from sucrose elongation or via enzymatic hydrolysis of inulin by exoinulinases and endoinulinases acting alone or synergistically. Exoinulinases cleave the non-reducing β-(2, 1) end of inulin-releasing fructose while endoinulinases act on the internal linkages randomly to release inulotrioses (F3), inulotetraoses (F4) and inulopentaoses (F5) as major products. Fructosyltransferases act by cleaving a sucrose molecule and then transferring the liberated fructose molecule to an acceptor molecule such as sucrose or another oligosaccharide to elongate the short-chain fructooligosaccharide. The FOS produced by the action of fructosyltransferases are 1-kestose (GF2), nystose (GF3) and fructofuranosyl nystose (GF4). The production of high yields of oligosaccharides of specific chain length from simple raw materials such as inulin and sucrose is a technical challenge. This paper critically explores recent research trends in the production and application of short-chain oligosaccharides. Inulin and enzyme sources for the production of prebiotics are discussed. The mechanism of FOS chain elongation and also the health benefits associated with prebiotics consumption are discussed in detail.  相似文献   

2.
A kinetic model based on a ping-pong mechanism was developed under the steady-state hypothesis to account for the short-chain fructooligosaccharides (sc-FOS) synthesis using the commercial cellulolytic enzyme preparation, Rohapect CM. This new mechanism takes into account the interactions between the enzyme species and potential substrates (sucrose and sc-FOS) as a single complex reaction, allowing a better understanding of the reaction kinetics.The initial reaction rate laws appropriately describe the kinetic profiles of the examined substrates. Whereas sucrose exhibited Michaelis–Menten behavior with substrate inhibition, 1-kestose and nystose followed Michaelis–Menten and sigmoid enzyme kinetics. In addition, the enzyme was competitively inhibited by glucose and exhibited significant hydrolytic activity in the presence of nystose.The overall model was simultaneously fitted to experimental data from three initial sucrose concentrations (0.5, 1.5 and 2.1 M) using a multi-response regression with kinetic parameters that have biochemical relevance and are independent of the enzyme concentration. According to the model, sucrose acts almost exclusively as a fructosyl donor substrate. The mathematical development described herein is expected to be suitable for modeling similar enzymatic reaction systems.  相似文献   

3.
A sugar mixture containing fructooligosaccharides and isomaltooligo-saccharides was produced. Sucrose was converted to fructooligosaccharides by a commercial enzyme preparation. The sugar mixture contained kestose (33.5%), nystose (13.3%), fructofuranosyl nystose (5.7%), glucose (20.9%), and unreacted sucrose (26.6%). The unreacted sucrose was converted to isomaltooligosaccharides by reacting the sugar mixture with Leuconostoc mesenteroides B-512FM dextransucrase. The final product comprised fructooligosaccharides (kestose, nystose, fructofuranosyl nystose), isomaltooligosaccharides (isomaltose through isomaltodecaose), glucose, and fructose.  相似文献   

4.
Bala  Arpita  Roy  Amit  Das  Ayan  Chakraborti  Dipankar  Das  Sampa 《BMC biotechnology》2013,13(1):1-11
β-Fructofuranosidases (or invertases) catalyse the commercially-important biotransformation of sucrose into short-chain fructooligosaccharides with wide-scale application as a prebiotic in the functional foods and pharmaceutical industries. We identified a β-fructofuranosidase gene (CmINV) from a Ceratocystis moniliformis genome sequence using protein homology and phylogenetic analysis. The predicted 615 amino acid protein, CmINV, grouped with an existing clade within the glycoside hydrolase (GH) family 32 and showed typical conserved motifs of this enzyme family. Heterologous expression of the CmINV gene in Saccharomyces cerevisiae BY4742∆suc2 provided further evidence that CmINV indeed functions as a β-fructofuranosidase. Firstly, expression of the CmINV gene complemented the inability of the ∆suc2 deletion mutant strain of S. cerevisiae to grow on sucrose as sole carbohydrate source. Secondly, the recombinant protein was capable of producing short-chain fructooligosaccharides (scFOS) when incubated in the presence of 10% sucrose. Purified deglycosylated CmINV protein showed a molecular weight of ca. 66 kDa and a Km and Vmax on sucrose of 7.50 mM and 986 μmol/min/mg protein, respectively. Its optimal pH and temperature conditions were determined to be 6.0 and 62.5°C, respectively. The addition of 50 mM LiCl led to a 186% increase in CmINV activity. Another striking feature was the relatively high volumetric production of this protein in S. cerevisiae as one mL of supernatant was calculated to contain 197 ± 6 International Units of enzyme. The properties of the CmINV enzyme make it an attractive alternative to other invertases being used in industry.  相似文献   

5.
Microbial beta-fructofuranosidases with transfructosylating activity can catalyze the transfructosylation of sucrose and synthesize fructooligosaccharides. Aspergillus japonicus NTU-1249 isolated from natural habitat was found to produce a significant amount of beta-fructofuranosidase with high transfructosylating activity and to have the potential for industrial production of fructooligosaccharides. In order to improve it's enzyme productivity, the medium composition and the cultivation conditions for A. japonicus NTU-1249 were studied. A. japonicus NTU-1249 can produce 83.5 units of transfructosylating activity per ml broth when cultivated in a shaking flask at 28 degrees C for 72 hours with a modified medium containing 80 g/l sucrose, 15 g/l soybean flour, 5 g/l yeast extract and 5 g/l NaCl at an initial pH of 6.0. The enzyme productivity was also optimized by submerged cultivation in a 5-litre jar fermentor with aeration at 1.5 vvm and agitation at 500 rpm. Under these operating conditions, the productivity of transfructosylating activity increased to 185.6 U/ml. Furthermore, the transfructosylating activity was improved to 256.1 U/ml in 1,000-litre pilot-scale fermentor. Enzymatic synthesis of fructooligosaccharides by beta-fructofuranosidase from A. japonicus NTU-1249 was performed in batch type by adding 5.6 units of transfructosylating activity per gram of sucrose to a 50% (w/v) sucrose solution at pH 5.0 and 50 degrees C. The yield of fructooligosaccharides was about 60% after reaction for 24 hours, and the syrup produced contained 29.8% (w/v) fructooligosaccharides, 15.2% (w/v) glucose and 5.0% (w/v) sucrose.  相似文献   

6.

Background

IslA4 is a truncated single domain protein derived from the inulosucrase IslA, which is a multidomain fructosyltransferase produced by Leuconostoc citreum. IslA4 can synthesize high molecular weight inulin from sucrose, with a residual sucrose hydrolytic activity. IslA4 has been reported to retain the product specificity of the multidomain enzyme.

Results

Screening experiments to evaluate the influence of the reactions conditions, especially the sucrose and enzyme concentrations, on IslA4 product specificity revealed that high sucrose concentrations shifted the specificity of the reaction towards fructooligosaccharides (FOS) synthesis, which almost eliminated inulin synthesis and led to a considerable reduction in sucrose hydrolysis. Reactions with low IslA4 activity and a high sucrose activity allowed for high levels of FOS synthesis, where 70% sucrose was used for transfer reactions, with 65% corresponding to transfructosylation for the synthesis of FOS.

Conclusions

Domain truncation together with the selection of the appropriate reaction conditions resulted in the synthesis of various FOS, which were produced as the main transferase products of inulosucrase (IslA4). These results therefore demonstrate that bacterial fructosyltransferase could be used for the synthesis of inulin-type FOS.  相似文献   

7.
Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB) when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC) was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that contributes to the final levan profile in reactions with sucrose as substrate.  相似文献   

8.
Bacterial fructansucrase enzymes belong to glycoside hydrolase family 68 and catalyze transglycosylation reactions with sucrose, resulting in the synthesis of fructooligosaccharides and/or a fructan polymer. Significant differences in fructansucrase enzyme product specificities can be observed, i.e. in the type of polymer (levan or inulin) synthesized, and in the ratio of polymer versus fructooligosaccharide synthesis. The Lactobacillus reuteri 121 inulosucrase enzyme produces a diverse range of fructooligosaccharide molecules and a minor amount of inulin polymer [with beta(2-1) linkages]. The three-dimensional structure of levansucrase (SacB) of Bacillus subtilis revealed eight amino acid residues interacting with sucrose. Sequence alignments showed that six of these eight amino acid residues, including the catalytic triad (D272, E523 and D424, inulosucrase numbering), are completely conserved in glycoside hydrolase family 68. The other three completely conserved residues are located at the -1 subsite (W271, W340 and R423). Our aim was to investigate the roles of these conserved amino acid residues in inulosucrase mutant proteins with regard to activity and product profile. Inulosucrase mutants W340N and R423H were virtually inactive, confirming the essential role of these residues in the inulosucrase active site. Inulosucrase mutants R423K and W271N were less strongly affected in activity, and displayed an altered fructooligosaccharide product pattern from sucrose, synthesizing a much lower amount of oligosaccharide and significantly more polymer. Our data show that the -1 subsite is not only important for substrate recognition and catalysis, but also plays an important role in determining the size of the products synthesized.  相似文献   

9.
Enzymatic fructosylation of organic acceptors other than saccharides brings new possibilities to synthesize molecules that do not exist in nature. The introduction of fructosyl moiety may lead to glycosides possessing enhanced physicochemical and bioactive properties which could be useful in the pharmaceutical and cosmetic industry. In this work, the regioselective synthesis of tyrosol β‐d ‐fructofuranoside (TF) catalyzed by β‐fructofuranosidase is investigated. In the first step, 32 commercial enzyme preparations are screened for fructoside‐hydrolyzing activity. The most active preparations are subsequently examined for fructofuranosyl transfer from sucrose to tyrosol. The best candidate, Novozym 188, is chosen to study the effect of reaction conditions on the product formation in a batch reactor. The effects of substrate concentration, temperature, pH, time, and enzyme dosage on the concentration of TF produced are studied using the design of experiments methodology. The maximal product concentration of 3.8 g L?1 is achieved for the sucrose concentration of 1.5 m , tyrosol concentration of 29 g L?1, temperature of 41 °C, and pH 5.1. Besides the main transfructosylation reaction between sucrose and tyrosol, several side reactions take place. A reaction network includes also the formation of fructooligosaccharides and the hydrolysis of sucrose and all reaction products.  相似文献   

10.
Response surface methodology was used as an optimization tool for the production of short chain fructooligosaccharides (sc-FOS) using the commercial cellulolytic enzyme preparation, Rohapect CM. Three independent variables, temperature, concentrations of sucrose and enzyme were tested in the reaction medium. The responses of the design were, yield (gsc-FOS/100 g initial sucrose), 1-kestose (g/100 g sc-FOS) and volumetric productivity (gsc-FOS/Lh). Significant effects on the three responses included a quadratic effect (temperature), a linear effect (sucrose and enzyme concentrations) and an interaction between temperature and sucrose concentration. The cost-effective conditions to support the process in a high competitive market were 50 °C, 6.6 TU/mL enzyme, 2.103 M sucrose in 50 mM acetate buffer at pH 5.5, and the synthesis for a 5 h reaction time. Under these conditions, a high YP/S (63.8%), QP (91.9 g/Lh) and sGF2 (68.2%) was achieved.  相似文献   

11.
The effect of four organic solvents on β-fructofuranosidase mediated synthesis of oligosaccharides from sucrose were investigated. Amongst the solvents examined, butyl acetate proved to be the best for oligosaccharide synthesis. Starting with the equivalent of 44.6 g/L of sucrose, 247 U of enzyme and 91.6% (by vol.) of butyl acetate results in the production of 8.8 g/L of oligosaccharides within 30 min, with trisaccharides constituting more than 60% of the oligosaccharides. The efficiency for conversion of sucrose to oligosaccharides is greater than 19%, and this exceeds the 11.6% (in 24 h) previously achieved with 1271 U of the same enzyme in aqueous medium. Use of butyl acetate as the bulk phase therefore modifies the reaction environment in favour of enhanced and accelerated rate of oligosaccharide synthesis by this β-fructofuranosidase.  相似文献   

12.
Both alpha-isomaltosyl beta-D-fructoside and alpha-D-xylosyl beta-D-fructoside show strong inhibition of the synthesis of water-insoluble and water-soluble D-glucans from sucrose by a partially purified preparation of a D-glucosyltransferase (GTase) from Streptococcus mutans 6715; however, the inhibitory modes differ substantially. In the presence of alpha-isomaltosyl beta-D-fructoside, the production of reducing sugars and the consumption of sucrose are remarkably enhanced, compared with a control of sucrose alone. Under these conditions, a large proportion of low-molecular-weight glycan (lmwg) and a series of nonreducing oligosaccharides (both containing D-fructosyl groups or residues) are produced. In contrast, in the presence of alpha-D-xylosyl beta-D-fructoside, the production of reducing sugars and the sucrose consumption are strikingly suppressed, and no lmwg or oligosaccharides are produced. Thus, it may be concluded that alpha-isomaltosyl beta-D-fructoside acts as an alternative acceptor for the D-glucosyl and/or D-glucanosyl transfer reactions of the enzyme, and serves to lessen the formation of insoluble and soluble D-glucan, although it stimulates the transferring activity of the enzyme. On the other hand, alpha-D-xylosyl beta-D-fructoside competitively inhibits the sucrose-splitting activity of the enzyme as an analog to sucrose, and thereby diminishes the synthesis of D-glucan.  相似文献   

13.
The dsrE gene from Leuconostoc mesenteroides NRRL B-1299 was shown to encode a very large protein with two potentially active catalytic domains (CD1 and CD2) separated by a glucan binding domain (GBD). From sequence analysis, DSR-E was classified in glucoside hydrolase family 70, where it is the only enzyme to have two catalytic domains. The recombinant protein DSR-E synthesizes both alpha-1,6 and alpha-1,2 glucosidic linkages in transglucosylation reactions using sucrose as the donor and maltose as the acceptor. To investigate the specific roles of CD1 and CD2 in the catalytic mechanism, truncated forms of dsrE were cloned and expressed in Escherichia coli. Gene products were then small-scale purified to isolate the various corresponding enzymes. Dextran and oligosaccharide syntheses were performed. Structural characterization by (13)C nuclear magnetic resonance and/or high-performance liquid chromatography showed that enzymes devoid of CD2 synthesized products containing only alpha-1,6 linkages. On the other hand, enzymes devoid of CD1 modified alpha-1,6 linear oligosaccharides and dextran acceptors through the formation of alpha-1,2 linkages. Therefore, each domain is highly regiospecific, CD1 being specific for the synthesis of alpha-1,6 glucosidic bonds and CD2 only catalyzing the formation of alpha-1,2 linkages. This finding permitted us to elucidate the mechanism of alpha-1,2 branching formation and to engineer a novel transglucosidase specific for the formation of alpha-1,2 linkages. This enzyme will be very useful to control the rate of alpha-1,2 linkage synthesis in dextran or oligosaccharide production.  相似文献   

14.
Prebiotic agents are food ingredients that are potentially beneficial to the health of consumers. The main commercial prebiotic agents consist of oligosaccharides and dietary fibres (mainly inulin). They are essentially obtained by one of three processes: 1) the direct extraction of natural polysaccharides from plants; 2) the controlled hydrolysis of such natural polysaccharides; 3) enzymatic synthesis, using hydrolases and/or glycosyl transferases. Both of these enzyme types catalyse transglycosylation reactions, allowing synthesis of small molecular weight synthetic oligosaccharides from mono- and disaccharides. Presently, in Europe, inulin-type fructans, characterised by the presence of fructosyl units bound to the beta-2,1 position of sucrose, are considered as one of the carbohydrate prebiotic references. Prebiotics escape enzymatic digestion in the upper gastrointestinal tract and enter the caecum without change to their structure. None are excreted in the stools, indicating that they are fermented by colonic flora so as to give a mixture of short-chain fatty acids (acetate, propionate and butyrate), L-lactate, carbon dioxide and hydrogen. By stimulating bifidobacteria, they may have the following implications for health: 1) potential protective effects against colorectal cancer and infectious bowel diseases by inhibiting putrefactive bacteria (Clostridium perfringens ) and pathogen bacteria (Escherichia coli, Salmonella, Listeria and Shigella ), respectively; 2) improvement of glucid and lipid metabolisms; 3) fibre-like properties by decreasing the renal nitrogen excretion; 4) improvement in the bioavailability of essential minerals; and 5) low cariogenic factor. These potential beneficial effects have been largely studied in animals but have not really been proven in humans. The development of a second generation of oligosaccharides and the putative implication of a complex bacterial trophic chain in the intestinal prebiotic fermentation process are also discussed.  相似文献   

15.
Phospholipase D (PLD), an enzyme predestined for the preparation of new phospholipids, was isolated from cabbage and purified in a highly efficient way by using a combination of hydrophobic chromatography and a specific calcium effect. In the presence of calcium ions (50mM), PLD is bound from the crude enzyme solution to Octyl-Sepharose and subsequently selectively eluted by removing the calcium ions. The obtained enzyme is electrophoretically pure (95%), its molecular mass and isoelectric point were determined to be 87,000 Da and 4.7, respectively. The purified enzyme was kinetically characterized by use of mixed phosphatidylcholine-SDS micelles as well as the short-chain lecithins 1,2-dihexanoyl- and 1,2-diheptanoyl-sn-glycero-3-phosphocholine as substrates. A hyperbolic upsilon/[S]-characteristic was obtained for the mixed micellar system, whereas the upsilon/[S] curves of the short-chain lecithins reflect the dependence of velocity on the physical state of the substrate. A small velocity increase was observed up to a critical substrate concentration near the critical micelle concentration, from where the velocity increases hyperbolically.  相似文献   

16.
The probiotic bacterium Lactobacillus?reuteri 121 produces two fructosyltransferase enzymes, a levansucrase and an inulosucrase. Although these two fructosyltransferase enzymes share high sequence similarity, they differ significantly in the type and size distribution of fructooligosaccharide products synthesized from sucrose, and in their activity levels. In order to examine the contribution of specific amino acids to such differences, 15 single and four multiple inulosucrase mutants were designed that affected residues that are conserved in inulosucrase enzymes, but not in levansucrase enzymes. The effects of the mutations were interpreted using the 3D structures of Bacillus?subtilis levansucrase (SacB) and Lactobacillus?johnsonii inulosucrase (InuJ). The wild-type inulosucrase synthesizes mostly fructooligosaccharides up to a degree of polymerization of 15 and relatively low amounts of inulin polymer. In contrast, wild-type levansucrase produces mainly levan polymer and fructooligosaccharides with a degree of polymerization < 5. Although most of the inulosucrase mutants in this study behaved similarly to the wild-type enzyme, the mutation G416E, at the rim of the active site pocket in loop 415-423, increased the hydrolytic activity twofold, without significantly changing the transglycosylation activity. The septuple mutant GM4 (T413K, K415R, G416E, A425P, S442N, W486L, P516L), which included two residues from the above-mentioned loop 415-423, synthesized 1-kestose only, but at low efficiency. Mutation A538S, located behind the general acid/base, increased the enzyme activity two to threefold. Mutation N543S, located adjacent to the +1/+2 sub-site residue R544, resulted in synthesis of not such a wide variety of fructooligosaccharides than the wild-type enzyme. The present study demonstrates that the product specificity of inulosucrase is easily altered by protein engineering, obtaining inulosucrase variants with higher transglycosylation specificity, higher catalytic rates and different fructooligosaccharide size distributions, without changing the β(2-1) linkage type in the product.  相似文献   

17.
A new fructosyltransferase produced by a new isolate of Bacillus macerans EG-6 showed mainly hydrolyzing activity at 10 g sucrose/l, while both hydrolyzing and transfructosylating activity were observed at 100 g sucrose/l. In contrast, the new enzyme catalyzed an almost exclusively fructosyl transfer reaction with 500 g sucrose/l, producing selectively 42% of fructooligosaccharide (GF4) without forming other fructooligosaccharides. The reaction was optimal at pH 6.0 and 37°C. © Rapid Science Ltd. 1998  相似文献   

18.
Fermentation of fructooligosaccharides (FOS) and other oligosaccharides has been suggested to be an important property for the selection of bacterial strains used as probiotics. However, little information is available on FOS transport and metabolism by lactic acid bacteria and other probiotic bacteria. The objectives of this research were to identify and characterize the FOS transport system of Lactobacillus paracasei 1195. Radiolabeled FOS was synthesized enzymatically from [(3)H]sucrose and purified by column and thin-layer chromatography, yielding three main products: glucose (G) alpha-1,2 linked to two, three, or four fructose (F) units (GF(2), GF(3), and GF(4), respectively). FOS hydrolysis activity was detected only in cell extracts prepared from FOS- or sucrose-grown cells and was absent in cell supernatants, indicating that transport must precede hydrolysis. FOS transport assays revealed that the uptake of GF(2) and GF(3) was rapid, whereas little GF(4) uptake occurred. Competition experiments showed that glucose, fructose, and sucrose reduced FOS uptake but that other mono-, di-, and trisaccharides were less inhibitory. When cells were treated with sodium fluoride, iodoacetic acid, or other metabolic inhibitors, FOS transport rates were reduced by up to 60%; however, ionophores that abolished the proton motive force only slightly decreased FOS transport. In contrast, uptake was inhibited by ortho-vanadate, an inhibitor of ATP-binding cassette transport systems. De-energized cells had low intracellular ATP concentrations and had a reduced capacity to accumulate FOS. These results suggest that FOS transport in L. paracasei 1195 is mediated by an ATP-dependent transport system having specificity for a narrow range of substrates.  相似文献   

19.
Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with beta(2-6) and beta(2-1) linkages, respectively. The probiotic bacterium Lactobacillus johnsonii strain NCC 533 possesses a single fructansucrase gene (open reading frame AAS08734) annotated as a putative levansucrase precursor. However, (13)C nuclear magnetic resonance (NMR) analysis of the fructan product synthesized in situ revealed that this is of the inulin type. The ftf gene of L. johnsonii was cloned and expressed to elucidate its exact identity. The purified L. johnsonii protein was characterized as an inulosucrase enzyme, producing inulin from sucrose, as identified by (13)C NMR analysis. Thin-layer chromatographic analysis of the reaction products showed that InuJ synthesized, besides the inulin polymer, a broad range of fructose oligosaccharides. Maximum InuJ enzyme activity was observed in a pH range of 4.5 to 7.0, decreasing sharply at pH 7.5. InuJ exhibited the highest enzyme activity at 55 degrees C, with a drastic decrease at 60 degrees C. Calcium ions were found to have an important effect on enzyme activity and stability. Kinetic analysis showed that the transfructosylation reaction of the InuJ enzyme does not obey Michaelis-Menten kinetics. The non-Michaelian behavior of InuJ may be attributed to the oligosaccharides that were initially formed in the reaction and which may act as better acceptors than the growing polymer chain. This is only the second example of the isolation and characterization of an inulosucrase enzyme and its inulin (oligosaccharide) product from a Lactobacillus strain. Furthermore, this is the first Lactobacillus strain shown to produce inulin polymer in situ.  相似文献   

20.
Raffinose oligosaccharides are major soluble carbohydrates in seeds and other tissues of plants. Their biosynthesis proceeds by stepwise addition of galactose units to sucrose, which are provided by the unusual donor galactinol (O-alpha-d-galactopyranosyl-(1-->1)-l-myo-inositol). Chain elongation may also proceed by transfer of galactose units between raffinose oligosaccharides. We here report on the purification, characterization, and heterologous expression of a multifunctional stachyose synthase (EC ) from developing pea (Pisum sativum L.) seeds. The protein, a member of family 36 of glycoside hydrolases, catalyzes the synthesis of stachyose, the tetrasaccharide of the raffinose series, by galactosyl transfer from galactinol to raffinose. It also mediates the synthesis of the pentasaccharide verbascose by galactosyl transfer from galactinol to stachyose as well as by self-transfer of the terminal galactose residue from one stachyose molecule to another. These activities show optima at pH 7.0. The enzyme also catalyzes hydrolysis of the terminal galactose residue of its substrates, but is unable to initiate the synthesis of raffinose oligosaccharides by galactosyl transfer from galactinol to sucrose. A minimum reaction mechanism which accounts for the broad substrate specificity and the steady-state kinetic properties of the protein is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号