首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Globular adiponectin (gAd), a truncated form of adipocyte-derived cytokine, stimulates RAW 264 cells to produce reactive oxygen species (ROS), which trigger an apoptotic cascade. In this study, we investigated the generation of intracellular and mitochondrial ROS in gAd-stimulated RAW 264 cells. Treatment with gAd efficiently induced the generation of intracellular and mitochondrial ROS, as detected by dichlorodihydrofluorescein diacetate and MitoSOX fluorescence, respectively. Furthermore, gAd treatment significantly increased 8-oxoguanine, a specific indicator of oxidative DNA damage. The transfection of RAW 264 cells with iNOS- and gp91phox-specific small interfering RNA reduced markedly the generation of intracellular, but not mitochondrial, ROS. Quantitative PCR revealed that the expression ratio of Bcl-2 to Bax was reduced in a time-dependent manner in gAd-treated RAW 264 cells. The overexpression of Bcl-2 markedly inhibited gAd-induced apoptosis in RAW 264 cells and also reduced both the intracellular and the mitochondrial ROS generation induced by gAd treatment. Moreover, the overexpression of Bcl-2 significantly suppressed gAd-induced NO secretion and NOS activity. In addition, the inhibition of NOS activity partially reduced the oxidative DNA damage induced by gAd. Taken together, these results demonstrate that the gAd-induced apoptotic pathway acting via ROS/RNS generation involves Bcl-2.  相似文献   

2.
It has previously been reported that the globular form of adiponectin (gAd), mature adipocyte-derived cytokine, induced generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. This study investigated whether diacylglycerol kinases (DGKs), enzymes functioning in sub-cellular signalling pathways, had a role on gAd-induced ROS generation in RAW 264 cells. Administration of R59022, a specific inhibitor for DGK, reduced gAd-induced ROS generation and NO release. RAW 264 cell expressed DGKα mRNA. Depression of DGKα mRNA by RNA interference significantly reduced the ROS generation in response to gAd treatment. Interestingly, transfection with the DGKα-specific small interfering RNA attenuated the expression level of Nox1 mRNA in gAd-treated RAW 264 cells. In addition, the DGKα knockdown with siRNA suppressed gAd-induced NO release.  相似文献   

3.
《Free radical research》2013,47(3):336-341
Abstract:

It has previously been reported that the globular form of adiponectin (gAd), mature adipocyte-derived cytokine, induced generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. This study investigated whether diacylglycerol kinases (DGKs), enzymes functioning in sub-cellular signalling pathways, had a role on gAd-induced ROS generation in RAW 264 cells. Administration of R59022, a specific inhibitor for DGK, reduced gAd-induced ROS generation and NO release. RAW 264 cell expressed DGKα mRNA. Depression of DGKα mRNA by RNA interference significantly reduced the ROS generation in response to gAd treatment. Interestingly, transfection with the DGKα-specific small interfering RNA attenuated the expression level of Nox1 mRNA in gAd-treated RAW 264 cells. In addition, the DGKα knockdown with siRNA suppressed gAd-induced NO release.  相似文献   

4.
5.
Globular adiponectin (gAd) induces the generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. We investigated the role of Ca2+ in gAd-induced ROS and NO generation. Pretreatment with BAPTA-AM, a selective chelator of intracellular Ca2+ ([Ca2+]i), partially reduced gAd-induced generation of ROS and NO in gAd-treated RAW 264 cells. The lowest [Ca2+]i occurred 30 min after gAd treatment, after which [Ca2+]i increased continually and exceeded the initial level. The mitochondrial Ca2+ ([Ca2+]m) detected by Rhod-2 fluorescence started to increase at 6 h after gAd treatment. Pretreatment with a NAD(P)H oxidase inhibitor, diphenyleneiodonium, prevented the reduction of [Ca2+]i in the early phase after gAd treatment. Calcium depletion by BAPTA-AM had no effect on the gAd-induced [Ca2+]m oscillation. The administration of a specific calmodulin inhibitor, calmidazolium, significantly suppressed gAd-induced ROS and NO generation and NOS activity.  相似文献   

6.
Reactive oxygen species (ROS) are important signal transduction molecules in ligand-induced signaling, regulation of cell growth, differentiation, apoptosis and motility. Recently NADPH oxidases (Nox) homologous to Nox2 (gp91phox) of phagocyte cytochrome b558 have been identified, which are an enzymatic source for ROS generation in epithelial cells. This study was undertaken to delineate the requirements for ROS generation by Nox4. Nox4, in contrast to other Nox proteins, produces large amounts of hydrogen peroxide constitutively. Known cytosolic oxidase proteins or the GTPase Rac are not required for this activity. Nox4 associates with the protein p22phox on internal membranes, where ROS generation occurs. Knockdown and gene transfection studies confirmed that Nox4 requires p22phox for ROS generation. Mutational analysis revealed structural requirements affecting expression of the p22phox protein and Nox activity. Mechanistic insight into ROS regulation is significant for understanding fundamental cell biology and pathophysiological conditions.  相似文献   

7.
Apoptosis linked to oxidative stress has been implicated in pancreatitis. We investigated whether NADPH oxidase mediates apoptosis in cerulein-stimulated pancreatic acinar AR42J cells. We report here that cerulein treatment resulted in the activation of NADPH oxidase, as determined by ROS production, translocation of cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and interaction between NADPH oxidase subunits. Cerulein induced Ca(2+) oscillation, the expression of apoptotic genes p53 and bax, and apoptotic indices (DNA fragmentation, TUNEL staining, caspase 3 activity, decrease in cell viability) in AR42J cells. Treatment with a Ca(2+) chelator, BAPTA-AM, or transfection with antisense oligonucleotides for NADPH oxidase subunits p22(phox) and p 47(phox) inhibited cerulein-induced ROS production, translocation of NADPH oxidase cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and the expression of apoptotic genes and apoptotic indices, as compared to the cells without treatment and those transfected with the corresponding sense oligonucleotides. These results indicate that NADPH oxidase may mediate ROS-induced apoptosis in pancreatic acinar cells in a Ca(2+)-dependent manner.  相似文献   

8.
Hyperglycemia-induced generation of reactive oxygen species (ROS) can lead to cardiomyocyte apoptosis and cardiac dysfunction. However, the mechanism by which high glucose causes cardiomyocyte apoptosis is not clear. In this study, we investigated the signaling pathways involved in NADPH oxidase-derived ROS-induced apoptosis in cardiomyocytes under hyperglycemic conditions. H9c2 cells were treated with 5.5 or 33 mM glucose for 36 h. We found that 33 mM glucose resulted in a time-dependent increase in ROS generation as well as a time-dependent increase in protein expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38, as well as the nuclear translocation of NF-kB. Treatment with apocynin or diphenylene iodonium (DPI), NADPH oxidase inhibitors, resulted in reduced expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38. In addition, treatment with JNK and NF-kB siRNAs blocked the activity of caspase-3. Furthermore, treatment with JNK, but not p38, siRNA inhibited the glucose-induced activation of NF-κB. Similar results were obtained in neonatal cardiomyocytes exposed to high glucose concentrations. Therefore, we propose that NADPH oxidase-derived ROS-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose.  相似文献   

9.
10.
Although glial cells play a major role in the pathogenesis of many neurological diseases by exacerbating neuronal and non-neuronal cell death, the mechanisms involved are unclear. We examined the effects of microglia-(MCM) or astrocyte-(ACM) conditioned media obtained by chemical ischemia on the neuronal injury in SH-SY5Y cells. Chemical ischemia was induced by the treatment with NaN3 and 2-deoxy-d-glucose for 2 h. MCM-treated SH-SY5Y cells showed reduced the viability, increased caspase-3 activity, decreased Bcl-2/Bax ratio, and increased cytochrome c release, increased inflammatory cytokines, and increased reactive oxygen species (ROS) generation. MCM also increased gp91phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which was inhibited by NADPH oxidase inhibitor, apocynin, and gp91phox siRNA. However, ACM did not show any significant changes. The results suggest that microglia activated by ischemic insult may increase reactive oxygen species generation via activation of gp91phox NADPH oxidase, resulting in neuronal injury.  相似文献   

11.
Reactive oxygen species (ROS) generated by the NADPH oxidases are conventionally thought to be cytotoxic and mutagenic and at high levels induce an oxidative stress response. The phagocyte NADPH oxidase catalyzes the NADPH-dependent reduction of molecular oxygen to generate superoxide O2-., which can dismute to generate ROS species. Together, these ROS participate in host defence by killing or damaging invading microbes. Flavocytochrome b558 is the catalytic core of the phagocyte NADPH oxidase and consists of a large glycoprotein gp91phox or Nox-2 and a small protein p22phox. The other components of the NADPH oxidase are cytosolic proteins, namely p67phox, p47phox, p40phox and Rac. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections. Evidence is rapidly accumulating that low level of ROS were produced by NADPH oxidase homologs in non-phagocytic cells. To date, six human homologs (Nox-1, Nox-3, Nox-4, Nox-5, Duox-1 and Duox-2) have been recently identified in a variety of non-phagocytic cells. The identification of Nox-1 was quickly followed by the cloning of Nox-3, Nox-4, and Nox-5. In parallel, two very large members of the Nox family were discovered, namely Duox-1 and Duox-2, initially also referred to as thyroid oxidases. The physiological functions of Nox-dependent ROS generation are in progress and still require detailed characterization. Activation mechanisms and tissue distribution of the different members of the Nox family are very different, suggesting distinct physiological functions. Nox family enzymes are likely to be involved in a variety of physiological events including cell proliferation, host defence, differentiation, apoptosis, senescence and activation of growth-related signaling pathways. An increase and a decrease in the function of Nox enzymes can contribute to a wide range of pathological processes.  相似文献   

12.
13.
Hypoxia in the tumor microenvironment triggers differential signaling pathways for tumor survival. In this study, we characterize the involvement of hypoxia and reactive oxygen species (ROS) generation in the antineoplastic mechanism of proopiomelanocortin (POMC) gene delivery in a mouse B16-F10 melanoma model in vivo and in vitro. Histological analysis revealed increased TUNEL-positive cells and enhanced hypoxic activities in melanoma treated with adenovirus encoding POMC (Ad-POMC) but not control vector. Because the apoptotic cells were detected mainly in regions distant from blood vessels, it was hypothesized that POMC therapy might render melanoma cells vulnerable to hypoxic insult. Using a hypoxic chamber or cobalt chloride (CoCl2), we showed that POMC gene delivery elicited apoptosis and caspase-3 activation in cultured B16-F10 cells only under hypoxic conditions. The apoptosis induced by POMC gene delivery was associated with elevated ROS generation in vitro and in vivo. Blocking ROS generation using the antioxidant N-acetyl-l-cysteine abolished the apoptosis and caspase-3 activities induced by POMC gene delivery and hypoxia. We further showed that POMC-derived melanocortins, including α-MSH, β-MSH, and ACTH, but not γ-MSH, contributed to POMC-induced apoptosis and ROS generation during hypoxia. To elucidate the source of ROS generation, application of the NADPH oxidase inhibitor diphenyleneiodonium attenuated α-MSH-induced apoptosis and ROS generation, implicating the proapoptotic role of NADPH oxidase in POMC action. Of the NADPH oxidase isoforms, only Nox4 was expressed in B16-F10 cells, and Nox4 was also elevated in Ad-POMC-treated melanoma tissues. Silencing Nox4 gene expression with Nox4 siRNA suppressed the stimulatory effect of α-MSH-induced ROS generation and cell apoptosis during hypoxia. In summary, we demonstrate that POMC gene delivery suppressed melanoma growth by inducing apoptosis, which was at least partly dependent on Nox4 upregulation.  相似文献   

14.
Plasma adiponectin level is significantly reduced in patients with metabolic syndrome, and vascular dysfunction is an important pathological event in these patients. However, whether adiponectin may protect endothelial cells and attenuate endothelial dysfunction caused by metabolic disorders remains largely unknown. Adult rats were fed with a regular or a high-fat diet for 14 wk. The aorta was isolated, and vascular segments were incubated with vehicle or the globular domain of adiponectin (gAd; 2 mug/ml) for 4 h. The effect of gAd on endothelial function, nitric oxide (NO) and superoxide production, nitrotyrosine formation, gp91(phox) expression, and endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) activity/expression was determined. Severe endothelial dysfunction (maximal vasorelaxation in response to ACh: 70.3 +/- 3.3 vs. 95.2 +/- 2.5% in control, P < 0.01) was observed in hyperlipidemic aortic segments, and treatment with gAd significantly improved endothelial function (P < 0.01). Paradoxically, total NO production was significantly increased in hyperlipidemic vessels, and treatment with gAd slightly reduced, rather than increased, total NO production in these vessels. Treatment with gAd reduced (-78%, P < 0.01) superoxide production and peroxynitrite formation in hyperlipidemic vascular segments. Moreover, a moderate attenuation (-30%, P < 0.05) in gp91(phox) and iNOS overexpression in hyperlipidemic vessels was observed after gAd incubation. Treatment with gAd had no effect on eNOS expression but significantly increased eNOS phosphorylation (P < 0.01). Most noticeably, treatment with gAd significantly enhanced eNOS (+83%) but reduced iNOS (-70%, P < 0.01) activity in hyperlipidemic vessels. Collectively, these results demonstrated that adiponectin protects the endothelium against hyperlipidemic injury by multiple mechanisms, including promoting eNOS activity, inhibiting iNOS activity, preserving bioactive NO, and attenuating oxidative/nitrative stress.  相似文献   

15.
The renin-angiotensin system (RAS) and reactive oxygen species (ROS) have been implicated in the development of insulin resistance and its related complications. There is also evidence that angiotensin II (Ang II)-induced generation of ROS contributes to the development of insulin resistance in skeletal muscle, although the precise mechanisms remain unknown. In the present study, we found that Ang II markedly enhanced NADPH oxidase activity and consequent ROS generation in L6 myotubes. These effects were blocked by the angiotensin II type 1 receptor blocker losartan, and by the NADPH oxidase inhibitor apocynin. Ang II also promoted the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox to the plasma membrane within 15 min. Furthermore, Ang II abolished insulin-induced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1), activation of protein kinase B (Akt), and glucose transporter-4 (GLUT4) translocation to the plasma membrane, which was reversed by pretreating myotubes with losartan or apocynin. Finally, small interfering RNA (siRNA)-specific gene silencing targeted specifically against p47phox (p47siRNA), in both L6 and primary myotubes, reduced the cognate protein expression, decreased NADPH oxidase activity, restored Ang II-impaired IRS1 and Akt activation as well as GLUT4 translocation by insulin. These results suggest a pivotal role for NADPH oxidase activation and ROS generation in Ang II-induced inhibition of insulin signaling in skeletal muscle cells.  相似文献   

16.
We recently demonstrated that hyperoxia (HO) activates lung endothelial cell NADPH oxidase and generates reactive oxygen species (ROS)/superoxide via Src-dependent tyrosine phosphorylation of p47(phox) and cortactin. Here, we demonstrate that the non-muscle ~214-kDa myosin light chain (MLC) kinase (nmMLCK) modulates the interaction between cortactin and p47(phox) that plays a role in the assembly and activation of endothelial NADPH oxidase. Overexpression of FLAG-tagged wild type MLCK in human pulmonary artery endothelial cells enhanced interaction and co-localization between cortactin and p47(phox) at the cell periphery and ROS production, whereas abrogation of MLCK using specific siRNA significantly inhibited the above. Furthermore, HO stimulated phosphorylation of MLC and recruitment of phosphorylated and non-phosphorylated cortactin, MLC, Src, and p47(phox) to caveolin-enriched microdomains (CEM), whereas silencing nmMLCK with siRNA blocked recruitment of these components to CEM and ROS generation. Exposure of nmMLCK(-/-) null mice to HO (72 h) reduced ROS production, lung inflammation, and pulmonary leak compared with control mice. These results suggest a novel role for nmMLCK in hyperoxia-induced recruitment of cytoskeletal proteins and NADPH oxidase components to CEM, ROS production, and lung injury.  相似文献   

17.
Reactive oxygen species (ROS) are important mediators of cellular signal transduction cascades such as proliferation, migration, and apoptosis. Chronic exposure of isolated β-cells to proinflammatory cytokines elevates intracellular oxidative stress leading to the demise of pancreatic β-cells culminating in the onset of diabetes. Although the mitochondrial electron transport chain is felt to be the primary source of ROS, several lines of recent evidence suggest that phagocyte-like NADPH oxidase plays a central role in cytokine-mediated ROS generation and apoptosis of β-cells. However, the precise mechanisms underlying the regulation of NADPH oxidase remain unknown. To address this, insulin-secreting INS 832/13 cells were treated with cytomix (IL-1β, IFN-γ, and TNF-α; 10 ng/ml each) for different time intervals (0-24 h). A significant, time-dependent increase in NADPH oxidase activation/intracellular ROS production, p47(phox) subunit, but not p67(phox) subunit, expression of the phagocyte-like NADPH oxidase were demonstrable under these conditions. Furthermore, siRNA-p47(phox) transfection or exposure of INS 832/13 cells to apocynin, a selective inhibitor of NADPH oxidase, markedly attenuated cytomix-induced ROS generation in these cells. Cytomix-mediated mitochondrial dysfunction in INS 832/13 cells was evident by a significant loss of mitochondrial membrane potential (MMP) and upregulated caspase 3 activity. Cytomix treatment also caused a transient (within 15 min) activation of Rac1, a component of the NADPH oxidase holoenzyme. Furthermore, GGTI-2147 and NSC23766, known Rac1 inhibitors, not only attenuated the cytomix-induced Rac1 activation but also significantly prevented loss of MMP (NSC23766 > GGTI-2147). However, NSC23766 had no effect on cytomix-induced NO generation or caspase 3 activation, suggesting additional regulatory mechanisms might underlie these signaling steps. Together, these findings suggested that Rac1-mediated regulation of phagocyte-like NADPH oxidase contributes to cytokine-mediated mitochondrial dysfunction in the β-cell.  相似文献   

18.
Fan S  Li L  Chen S  Yu Y  Qi M  Tashiro S  Onodera S  Ikejima T 《Free radical research》2011,45(11-12):1307-1324
Silibinin, as the major active constituent of silymarin, has its various biological effects. Here, we investigated the inhibitory effects of silibinin on HeLa cell growth in relation to autophagy and apoptosis induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. Silibinin dose and time-dependently decreased cell growth cultured in medium containing 10% fetal bovine serum or in serum free media (SFM) with an IC(50) of approximately 80-100 and 40-60 μM at 24 h, respectively. Silibinin induced autophagy at 12 h, confirmed by monodansylcadervarine (MDC) staining and up-regulation of beclin-1, and induced apoptosis at 24 h, detected by observation of apoptotic bodies and activation of caspase-3. 3-methyladenine (3-MA) inhibited silibinin-induced autophagy and attenuated the silibinin's inhibitory effect on cell viability, suggesting that autophagy enhanced silibinin-induced cell death. Silibinin increased ROS levels at 12 h, and ROS scavenger, N-acetylcysteine (NAC), significantly reversed the cytotoxicity of silibinin through inhibiting both autophagy and apoptosis. Specific antioxidants were applied and results indicated that hydroxyl radical (·OH) was the major ROS induced by silibinin, and OH scavenger glutathione (GSH) inhibited apoptosis and autophagy. Silibinin also generated RNS production in the cells at 12 h. High concentration of N omega-nitro-l-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor attenuated the cytotoxicity of silibinin by decreasing ROS levels, leading to down-regulation of apoptosis. Silibinin also could interrupt the respiring functions of mitochondria, leading to ROS production and oxidative damage.  相似文献   

19.
Oxidative stress became emerged as a key player in the development and progression of many pathological conditions including virus-induced encephalitis. Heme oxygenase-1 (HO-1) plays a crucial role in defending the body against oxidant-induced injury during inflammatory processes. Therefore, we investigated the induction of HO-1 level in host cells, which may exert a beneficial effect to minimize viral replication in SK-N-SH cells. In this study, we found that enterovirus 71 (EV71) induced the generation of reactive oxygen species (ROS) and activation of NADPH oxidase. EV71-induced ROS generation was mediated through activation of integrin β1, an epidermal growth factor receptor (EGFR), Rac1 and NADPH oxidase which revealed by using selective pharmacological inhibitors or transfection with respective siRNAs. In addition, the reduction of viral load was observed with NADPH oxidase inhibitors (apocynin and diphenyleneiodonium chloride), ROS scavenger (N-acetylcysteine), and transfection with p47(phox) siRNA in Western blot and real-time PCR analyses. Consistently, overexpression of HO-1 attenuated EV71-induced NADPH oxidase/ROS generation and EV71 replication which were abrogated by pretreatment with an HO-1 inhibitor, zinc protoporphyrin IX (ZnPP IX). Moreover, metabolite of HO-1, carbon monoxide (CO), also diminished ROS formation and EV71 replication which were reversed by pretreatment with a CO scavenger (hemoglobin) and a cyclic GMP-dependent protein kinase (PKG) inhibitor (KT5823). These findings suggest that up-regulation of HO-1 exerts as a host cellular defense mechanism against EV71 infection in SK-N-SH cells.  相似文献   

20.
The production of reactive oxygen species (ROS) is central to the etiology of endothelial dysfunction in sepsis. Endothelial cells respond to infection by activating NADPH oxidases that are sources of intracellular ROS and potential targets for therapeutic administration of antioxidants. Ascorbate is an antioxidant that accumulates in these cells and improves capillary blood flow, vascular reactivity, arterial blood pressure, and survival in experimental sepsis. Therefore, the present study tested the hypothesis that ascorbate regulates NADPH oxidases in microvascular endothelial cells exposed to septic insult. We observed that incubation with Escherichia coli lipopolysaccharide (LPS) and interferon-gamma (IFNgamma) increased NADPH oxidase activity and expression of the enzyme subunit p47phox in mouse microvascular endothelial cells of skeletal muscle origin. Pretreatment of the cells with ascorbate prevented these increases. Polyethylene glycol-conjugated catalase and selective inhibitors of Jak2 also abrogated induction of p47phox. Exogenous hydrogen peroxide induced p47phox expression that was prevented by pretreatment of the cells with ascorbate. LPS+IFNgamma or hydrogen peroxide activated the Jak2/Stat1/IRF1 pathway and this effect was also inhibited by ascorbate. In conclusion, ascorbate blocks the stimulation by septic insult of redox-sensitive Jak2/Stat1/IRF1 signaling, p47phox expression, and NADPH oxidase activity in microvascular endothelial cells. Because endothelial NADPH oxidases produce ROS that can cause endothelial dysfunction, their inhibition by ascorbate may represent a new strategy for sepsis therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号