首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由非洲猪瘟病毒(ASFV)引起的非洲猪瘟(ASF)给我国养猪业带来了不可估量的经济损失,严重阻碍了我国养猪业的发展,研发ASFV快速诊断试剂是目前最重要的内容之一。CP204L基因编码ASFV结构蛋白p30。本研究以克隆ASFV的CP204L基因为基础,通过基因重组技术,加入His标签,将构建的重组质粒命名为pET-28a-CP204L。将重组质粒转化至大肠杆菌BL21(DE3)感受态细胞,37℃经1mmol/L异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达6h,表达蛋白进行SDS-PAGE鉴定和Western Blot检测。重组蛋白纯化后免疫小鼠制备筛选单克隆抗体,Western Blot和IFA验证单抗的结合特异性。结果表明,重组的pET-28a-CP204L诱导后表达蛋白为30kD,以不可溶性包涵体形式存在;表达蛋白利用His标签进行纯化,获得纯化蛋白2mg,单克隆抗体筛选获得5株IgG亚型的ASFV p30蛋白的单抗,且均具有良好的结合活性。本研究为发展ASFV检测方法提供了基础。  相似文献   

2.
非洲猪瘟病毒(African swine fever virus,ASFV)的感染导致猪的死亡率高达100%,给养猪业造成毁灭性灾难。因此,开展针对ASFV感染复制的研究有着重大的意义。目前发现ASFV有超过150个开放阅读框,其中D117L基因编码的内囊膜蛋白p17参与病毒二十面体结构的形成,但是对p17调控宿主细胞功能的机制知之甚少。研究通过免疫沉淀技术联合蛋白质谱分析,初步筛选出与ASFV p17潜在的宿主互作蛋白。通过进一步免疫共沉淀技术和激光共聚焦实验确认了p17与线粒体外膜蛋白TOMM70(translocase of outer mitochondrial membrane 70)、热休克蛋白HSPA8(heat shock 70 kDa protein 8)的互作。该研究为进一步探索p17在ASFV感染过程中的功能提供了重要信息。  相似文献   

3.
African swine fever virus (ASFV), a large icosahedral deoxyvirus, is the causative agent of an economically relevant hemorrhagic disease that affects domestic pigs. The major purpose of the present study was to investigate the nuclear transport activities of the ASFV p37 and p14 proteins, which result from the proteolytic processing of a common precursor. Experiments were performed by using yeast-based nucleocytoplasmic transport assays and by analysis of the subcellular localization of different green fluorescent and Myc fusion proteins in mammalian cells. The results obtained both in yeast and mammalian cells clearly demonstrated that ASFV p14 protein is imported into the nucleus but not exported to the cytoplasm. The ability of p37 protein to be exported from the nucleus to the cytoplasm of both yeast and mammalian cells was also demonstrated, and the results clearly indicate that p37 nuclear export is dependent on the interaction of the protein with the CRM-1 receptor. In addition, p37 was shown to exhibit nuclear import activity in mammalian cells. The p37 protein nuclear import and export abilities described here constitute the first report of a nucleocytoplasmic shuttling protein encoded by the ASFV genome. Overall, the overlapping results obtained for green fluorescent protein fusions and Myc-tagged proteins undoubtedly demonstrate that ASFV p37 and p14 proteins exhibit nucleocytoplasmic transport activities. These findings are significant for understanding the role these proteins play in the replication cycle of ASFV.  相似文献   

4.
为了筛选出酶联免疫吸附测定(Enzyme linked immunosorbent assay,ELISA)反应性最佳的非洲猪瘟病毒(African swine fever virus,ASFV)诊断抗原,通过建立ELISA方法,以杆状病毒昆虫细胞表达系统表达的ASFV p30蛋白诊断抗原为参照,首次探讨原核表达系统表...  相似文献   

5.
6.
African swine fever virus (ASFV) is a large enveloped DNA virus that shares the striking icosahedral symmetry of iridoviruses. To understand the mechanism of assembly of ASFV, we have been studying the biosynthesis and subcellular distribution of p73, the major structural protein of ASFV. Sucrose density sedimentation of lysates prepared from infected cells showed that newly synthesized p73 was incorporated into a complex with a size of 150 to 250 kDa. p73 synthesized by in vitro translation migrated at 70 kDa, suggesting that cellular and/or viral proteins are required for the formation of the 150- to 250-kDa complex. During a 2-h chase, approximately 50% of the newly synthesized pool of p73 bound to the endoplasmic reticulum (ER). During this period, the membrane-bound pool of p73, but not the cytosolic pool, formed large complexes of approximately 50,000 kDa. The complexes were formed via assembly intermediates, and the entire membrane-associated pool of p73 was incorporated into the 50,000-kDa complex within 2 h. The 50,000-kDa complexes containing p73 were also detected in virions secreted from cells. Immunoprecipitation of sucrose gradients with sera taken from hyperimmune pigs suggested that p73 was the major component of the 50,000-kDa complex. It is possible, therefore, that the complex contains between 600 and 700 copies of p73. The kinetics of complex formation and envelopment of p73 were similar, and complex formation and envelopment were both reversibly inhibited by cycloheximide, suggesting a functional link between complex assembly and ASFV envelopment. A protease protection assay detected 50,000-kDa complexes on the inside and outside of the membranes forming the viral envelope. The identification of a complex containing p73 beneath the envelope of ASFV suggests that p73 may be a component of the inner core shell or matrix of ASFV. The outer pool may represent p73 within the outer capsid layer of the virus. In summary, the data suggest that the assembly of the inner core matrix and outer capsid of ASFV takes place on the ER membrane during envelopment and that these structures are not preassembled in the cytosol.  相似文献   

7.
The murine poly(C)-binding protein (mCBP) was previously shown to belong to the group of K-homology (KH) proteins by virtue of its homology to hnRNP-K. We have isolated cDNA-splice variants of mCBP which differ by two variable regions of 93 bp and/or 39 +/- 3 bp respectively. Both variable regions are located between the second and third KH-domain of mCBP. The characterization of a partial genomic clone enabled us to propose a model for the generation of the second variable region by the use of a putative alternative splice signal. The mCBP mRNA is expressed ubiquitously and the protein is found predominantly in the nucleus with the exception of the nucleoli. We have identified five proteins which interact with mCBP in the yeast two hybrid system: mouse y-box protein 1 (msy-1), y-box-binding protein, hnRNP-L, filamin and splicing factor 9G8. The interaction between mCBP and splicing factor 9G8 was confirmed in vivo. These results suggest a function of mCBP in RNA metabolism.  相似文献   

8.
9.
10.
African swine fever virus(ASFV) infects domestic pigs and European wild boars with strong, hemorrhagic and high mortality. The primary cellular targets of ASFV is the porcine macrophages. Up to now, no commercial vaccine or effective treatment available to control the disease. In this study, three recombinant Saccharomyces cerevisiae(S. cerevisiae) strains expressing fused ASFV proteins-porcine Ig heavy chains were constructed and the immunogenicity of the S. cerevisiae-vectored cocktail ASFV feeding vaccine was further evaluated. To be specific, the P30-Fcc and P54-Fca fusion proteins displaying on surface of S. cerevisiae cells were produced by fusing the Fc fragment of porcine immunoglobulin Ig G1 or IgA1 with p30 or p54 gene of ASFV respectively. The recombinant P30-Fcc and P54-Fca fusion proteins expressed by S. cerevisiae were verified by Western blotting, flow cytometry and immunofluorescence assay.Porcine immunoglobulin Fc fragment fused P30/P54 proteins elicited P30/P54-specific antibody production and induced higher mucosal immunity in swine. The absorption and phagocytosis of recombinant S. cerevisiae strains in IPEC-J2 cells or porcine alveolar macrophage(PAM) cells were significantly enhanced, too. Here, we introduce a kind of cheap and safe oral S. cerevisiae-vectored vaccine, which could activate the specific mucosal immunity for controlling ASFV infection.  相似文献   

11.
Recombinant hnRNP K-homology (KH) domains 1 and 3 of the poly(rC)-binding protein (PCBP) 2 were purified and assayed for interaction with coxsackievirus B3 RNA in electrophoretic mobility shift assays using in vitro transcribed RNAs which represent signal structures of the 5′-nontranslated region. KH domains 1 and 3 interact with the extended cloverleaf RNA and domain IV RNA of the internal ribosome entry site (IRES). KH1 but not KH3 interacts with subdomain IV/C RNA, whereas KH3 interacts with subdomain IV/B. All in vitro results are consistent with yeast three-hybrid experiments performed in parallel. The data demonstrate interaction of isolated PCBP2 KH1 and KH3 domains to four distinct target sites within the 5′-nontranslated region of the CVB3 genomic RNA.  相似文献   

12.
It is generally believed that cellular chaperones facilitate the folding of virus capsid proteins, or that capsid proteins fold spontaneously. Here we show that p73, the major capsid protein of African swine fever virus (ASFV) failed to fold and aggregated when expressed alone in cells. This demonstrated that cellular chaperones were unable to aid the folding of p73 and suggested that ASFV may encode a chaperone. An 80-kDa protein encoded by ASFV, termed the capsid-associated protein (CAP) 80, bound to the newly synthesized capsid protein in infected cells. The 80-kDa protein was released following conformational maturation of p73 and dissociated before capsid assembly. Coexpression of the 80-kDa protein with p73 prevented aggregation and allowed the capsid protein to fold with kinetics identical to those seen in infected cells. CAP80 is, therefore, a virally encoded chaperone that facilitates capsid protein folding by masking domains exposed by the newly synthesized capsid protein, which are susceptible to aggregation, but cannot be accommodated by host chaperones. It is likely that these domains are ultimately buried when newly synthesized capsid proteins are added to the growing capsid shell.  相似文献   

13.
K-homology (KH) splicing regulator protein (KSRP) is a multi-domain RNA-binding protein that regulates different steps of mRNA metabolism, from mRNA splicing to mRNA decay, interacting with a broad range of RNA sequences. To understand how KSRP recognizes its different RNA targets it is necessary to define the general rules of KSRP–RNA interaction. We describe here a complete scaffold-independent analysis of the RNA-binding potential of the four KH domains of KSRP. The analysis shows that KH3 binds to the RNA with a significantly higher affinity than the other domains and recognizes specifically a G-rich target. It also demonstrates that the other KH domains of KSRP display different sequence preferences explaining the broad range of targets recognized by the protein. Further, KSRP shows a strong negative selectivity for sequences containing several adjacent Cytosines limiting the target choice of KSRP within single-stranded RNA regions. The in-depth analysis of the RNA-binding potential of the KH domains of KSRP provides us with an understanding of the role of low sequence specificity domains in RNA recognition by multi-domain RNA-binding proteins.  相似文献   

14.
Sam68 is a member of a growing family of proteins that contain a single KH domain embedded in a larger conserved domain of approximately 170 amino acids. Loops 1 and 4 of this KH domain family are longer than the corresponding loops in other KH domains and contain conserved residues. KH domains are protein motifs that are involved in RNA binding and are often present in multiple copies. Here we demonstrate by coimmunoprecipitation studies that Sam68 self-associated and that cellular RNA was required for the association. Deletion studies demonstrated that the Sam68 KH domain loops 1 and 4 were required for self-association. The Sam68 interaction was also observed in Saccharomyces cerevisiae by the two-hybrid system. In situ chemical cross-linking studies in mammalian cells demonstrated that Sam68 oligomerized in vivo. These Sam68 complexes bound homopolymeric RNA and the SH3 domains of p59fyn and phospholipase Cgamma1 in vitro, demonstrating that Sam68 associates with RNA and signaling molecules as a multimer. The formation of the Sam68 complex was inhibited by p59fyn, suggesting that tyrosine phosphorylation regulates Sam68 oligomerization. Other Sam68 family members including Artemia salina GRP33, Caenorhabditis elegans GLD-1, and mouse Qk1 also oligomerized. In addition, Sam68, GRP33, GLD-1, and Qk1 associated with other KH domain proteins such as Bicaudal C. These observations indicate that the single KH domain found in the Sam68 family, in addition to mediating protein-RNA interactions, mediates protein-protein interactions.  相似文献   

15.
16.
The DP71L protein of African swine fever virus (ASFV) shares sequence similarity with the herpes simplex virus ICP34.5 protein over a C-terminal domain. We showed that the catalytic subunit of protein phosphatase 1 (PP1) interacts specifically with the ASFV DP71L protein in a yeast two-hybrid screen. The chimeric full-length DP71L protein, from ASFV strain Badajoz 71 (BA71V), fused to glutathione S-transferase (DP71L-GST) was expressed in Escherichia coli and shown to bind specifically to the PP1-alpha catalytic subunit expressed as a histidine fusion protein (6xHis-PP1alpha) in E. coli. The functional effects of this interaction were investigated by measuring the levels of PP1 and PP2A in ASFV-infected Vero cells. This showed that infection with wild-type ASFV strain BA71V activated PP1 between two- and threefold over that of mock-infected cells. This activation did not occur in cells infected with the BA71V isolate in which the DP71L gene had been deleted, suggesting that expression of DP71L leads to PP1 activation. In contrast, no effect was observed on the activity of PP2A following ASFV infection. We showed that infection of cells with wild-type BA71V virus resulted in decreased phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha). ICP34.5 recruits PP1 to dephosphorylate the alpha subunit of eukaryotic translational initiation factor 2 (also known as eIF-2alpha); possibly the ASFV DP71L protein has a similar function.  相似文献   

17.
Poly(C)-binding proteins (PCBPs) are important regulatory proteins that contain three KH (hnRNP K homology) domains. Binding poly(C) D/RNA sequences via KH domains is essential for multiple PCBP functions. To reveal the basis for PCBP-D/RNA interactions and function, we determined the structure of a construct containing the first two domains (KH1-KH2) of human PCBP2 by NMR. KH1 and KH2 form an intramolecular pseudodimer. The large hydrophobic dimerization surface of each KH domain is on the side opposite the D/RNA binding interface. Chemical shift mapping indicates both domains bind poly(C) DNA motifs without disrupting the KH1-KH2 interaction. Spectral comparison of KH1-KH2, KH3, and full-length PCBP2 constructs suggests that the KH1-KH2 pseudodimer forms, but KH3 does not interact with other parts of the protein. From NMR studies and modeling, we propose possible modes of cooperative binding tandem poly(C) motifs by the KH domains. D/RNA binding may induce pseudodimer dissociation or stabilize dissociated KH1 and KH2, making protein interaction surfaces available to PCBP-binding partners. This conformational change may represent a regulatory mechanism linking D/RNA binding to PCBP functions.  相似文献   

18.
19.
A specific interaction of ASFV p54 protein with 8 kDa light chain cytoplasmic dynein (DLC8) has been previously characterized and this interaction is critical during virus internalization and transport to factory sites. During early phases of infection, the virus induces the initiation of apoptosis triggering activation of caspase-9 and -3. To analyze the role of the structural protein p54 in apoptosis, transient expression experiments of p54 in Vero cells were carried out which resulted in effector caspase-3 activation and apoptosis. Interestingly, p54 mutants, lacking the 13 aa dynein-binding motif lose caspase activation ability and pro-death function of p54. This is the first reported ASFV protein which induces apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号