首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacteriophage PM2 presently is the only member of the Corticoviridae family. The virion consists of a protein-rich lipid vesicle, which is surrounded by an icosahedral protein capsid. The lipid vesicle encloses a supercoiled circular double-stranded DNA genome of 10,079 bp. PM2 belongs to the marine phage community and is known to infect two gram-negative Pseudoalteromonas species. In this study, we present a characterization of the PM2 genome made using the in vitro transposon insertion mutagenesis approach. Analysis of 101 insertion mutants yielded information on the essential and dispensable regions of the PM2 genome and led to the identification of several new genes. A number of lysis-deficient mutants as well as mutants displaying delayed- and/or incomplete-lysis phenotypes were identified. This enabled us to identify novel lysis-associated genes with no resemblance to those previously described from other bacteriophage systems. Nonessential genome regions are discussed in the context of PM2 genome evolution.  相似文献   

2.
In this study we investigated the lysis system of the lipid-containing double-stranded DNA bacteriophage PM2 infecting Gram-negative marine Pseudoalteromonas species. We analysed wt and lysis-deficient phage-induced changes in the host physiology and ascribed functions to two PM2 gene products (gp) involved in lysis. We show that bacteriophage PM2 uses a novel system to disrupt the infected cell. The novelty is based on the following findings: (i) gp k is needed for the permeabilization of the cytoplasmic membrane and appears to play the role of a typical holin. However, its unique primary structure [53 aa, 1 transmembrane domain (TMD)] places it into a new class of holins. (ii) We have proposed that, unlike other bacteriophages studied, PM2 relies on lytic factors of the cellular origin for digestion of the peptidoglycan. (iii) gp l (51 aa, no TMDs) is needed for disruption of the outer membrane, which is highly rigidified by the divalent cations abundant in the marine environment. The gp l has no precedent in other phage lytic systems studied so far. However, the presence of open reading frame l-like genes in genomes of other bacterial viruses suggests that the same system might be used by other phages and is not unique to PM2.  相似文献   

3.
4.
The bacteriophage PM2 requires extracellular Ca2+ at concentrations greater than 3 · 10−4 M for the production of viable virus, whereas the host cell Pseudomonas BAL-31 grows normally in medium containing 3 · 10−5 M Ca2+ (low calcium). Virus attachment occurs normally in low calcium, the infected cultures partially lyse, but no infectious virus particles are released. Sucrose gradient analysis shows that lysates made in low calcium contain no PM2-like particles. The addition of calcium very late in the infectious cycle completely restores virus production to cultures infected in low calcium, whereas removal of calcium after infection prevents virus production. Our experiments indicate that Ca2+ is essential for some process late in the lytic cycle, such as the final assembly of stable, infectious PM2 particles.  相似文献   

5.
The nucleocapsid proteins of bacteriophage PM2 and the inner lamella of the lipid bilayer, containing most of the phosphatidlethanolamine residues, were selectively cross-linked in the presence of 0.1-0.5% glutaraldehyde, 5 mM dimethylsuberimidate, or 0.05% toluene 2,4-diisocyanate. The biological activity (p.f.u.) of PM2 modified by these reagents decreased 10(6)-fold in all cases. The spike and coat proteins were selectively cross-linked in the presence of 7.5 mM N,N'-p-phenylenedimaleimide. The biological activity of virus modified by this reagen was unaffected. The electron paramagnetic resonance spectra of fatty acid spin labels incorporated into native and chemically modified viral membranes were qualitatively similar but show quantitative differences. Fixation with glutaraldehyde increased the rigidity of the membrane while Triton X-100 induced a more flexible structure. There was no change in the electron paramagnetic resonance spectrum of virus treated with N,N'-p-phenylenedimaleimide, however.  相似文献   

6.
Interactions between lipids and the DNA-binding protein (protein IV) purified from bacteriophage PM2 were studied in vitro. The efficiency of incorporation of protein IV into single-walled liposomes was more than 90%. Protein IV embedded in liposomes interacted more strongly with PM2 DNA than protein IV alone. The DNA--protein-IV--liposome complex was relatively stable as observed by sedimentation behavior on a sucrose gradient. The interaction between DNA and the protein-IV--liposome was abolished by tryptic digestion, even though 40% of the protein remained in the vesicle. More than 70% of the amino acids of this embedded peptide segment were hydrophobic. Carboxypeptidase digestion of the protein-IV--liposome caused a release of 20% of the radioactivity of the vesicle without changing the DNA-binding ability of the complexes. Modification of the protein-IV--liposome with the chemical probe, 2,4-dinitrofluorobenzene, and analysis of the tryptic peptides released from the protein-IV--liposome demonstrated that the N-terminal basic amino acid cluster segment responsible for the DNA binding was located on the outer surface of the bilayer. These results support an earlier model in which protein IV anchors itself in the inner leaflet of the PM2 bilayer membrane, interacting with the DNA in the virion.  相似文献   

7.
A polymerase activity is associated with protein IV, a protein which is associated with the DNA in bacteriophage PM2. The native enzyme unit is probably a dimer. Manganese ions are required for the polymerisation reaction and there is a well-defined Mn2+ optimum at 2.5 mM. The pH optimum is at 8.1, the temperature optimum at 28 degrees C. The activity is a polynucleotide-pyrophosphorylating reaction in the presence of ribo- or deoxyribonucleoside triphosphates. The polymerisation reaction is stimulated in the presence of nuclei- acids or polynucleotides as effectors. The product is not covalently linked to the effector.  相似文献   

8.
In order to construct a physical map of the bacteriophage fd genome, the doubly closed replicative form (RFI) DNA of phage fd was cleaved into unique fragments by four different restriction endonucleases (Hap, Hga, HinH and Hind) prepared from Haemophilus strains H. aphirophilus, H. gallinarum, H. influenzae H-I and H. influenzae Rd, respectively. As Hind cleaved RFI DNA at a single site, this site was used as a reference point for mapping. HinH cleaved RFI DNA at three sites, Hga at six sites and Hap at 13 sites, respectively. The 5′-termini of the fragments produced by either HinH or Hga were labelled with 32P in the polynucleotide kinase reaction. The labelled fragments were separated and further cleaved by other enzymes. The re-digestion products of partially digested fragments were also analysed. On the basis of these data and estimates of the size of each fragment, a cleavage map of the phage fd genome was constructed.  相似文献   

9.
The morphogenesis of poxviruses such as vaccinia virus (VACV) sees the virion shape mature from spherical to brick-shaped. Trimeric capsomers of the VACV D13 protein form a transitory, stabilizing lattice on the surface of the initial spherical immature virus particle. The crystal structure of D13 reveals that this major scaffolding protein comprises?a double β barrel "jelly-roll" subunit arranged as pseudo-hexagonal trimers. These structural features are characteristic of the major capsid proteins of?a lineage of large icosahedral double-stranded DNA viruses including human adenovirus and the bacteriophages PRD1 and PM2. Structure-based phylogenetic analysis confirms that VACV belongs to this lineage, suggesting that (analogously to higher organism embryogenesis) early poxvirus morphogenesis reflects their evolution from a lineage of viruses sharing a common icosahedral ancestor.  相似文献   

10.
Infection of Pseudomonas BAL-31 with the lipid-containing bacteriophage PM2 resulted in no detectable change in the rate of phosphatidylglycerol (PG) or phosphatidylethanolamine (PE) biosynthesis. An increase in the PG content of infected cultures was not seen until the cultures began to lyse, and this increase was in fact only a relative increase resulting from the extensive turnover of PE at the onset of culture lysis. Turnover studies revealed that the glycerol, phosphorus fatty acid, and ethanolamine moieties of PE turned over simultaneously at the time of lysis, and therefore made it unlikely that there was a PE to PG conversion during the latent period of the phage. The lipid found in the bacteriophage did not reflect a preferential selection for lipid synthesized before or after infection, but in fact reflected the composition of the host membrane at the time the phage were assembled. The use of a modified medium that allowed the cultivation of Pseudomonas BAL-31 as a prototroph and resulted in reliable lysis times of infected cultures led us to the conclusion that PM2 infection effects little change in host phospholipid metabolism, and that there is sufficient PG in the host cytoplasmic membrane to account for a full burst of phage. As a result of the reliable lysis times that we have achieved, we concluded that certain metabolic events, i.e., PE turnover, are lytic phenomena and must not be confused with events relevant to the biosynthesis and maturation of the phage.  相似文献   

11.
12.
13.
The regulation of membrane formation in bacteriophage PM2 serves as a simple model for changes in membrane structure in eukaryotic cells. Prior to Pseudomonas host lysis, wild-type virions mature to an icosahedral morphology at the inner face of the cytoplasmic membrane. The proliminary charcterization of two temperature-sensitive mutants of PM2 is described. In cells infected at the restrictive temperature with ts 1, an abundance of “empty” virus-size membrane vesicles are seen. Synthesis of DNA is also reduced in ts 1 infected cells. The preponderance of vesicles is not sen in cells infected with wil-type virus or with ts 1 at the permissive temperature. The “empty” appearance of the viral membranes suggests that viral DNA is not encapsulated. The major viral capsid protein (MW 26,000) is located just out side the viral membrane and normallyl sediments with host and virus membranes; insted, large amounts of capsid protein can be precipitated from the supernatant with TCA. Compared to cells infected with wild type virus, cells infected with is 5 at th restrictive temperature produce inside the cell an aboundance of virus-soze membrane vesicles. Taken Together, These results with viral mutants suggest that formation of a viral membrane of the proper size does not require a DNA core around which to form, or an outer scaffolding of coat protein against which to form a spherical bilayer.  相似文献   

14.
The membrane structure of lipid-containing viruses   总被引:39,自引:0,他引:39  
  相似文献   

15.
The nucleocapsid of bacteriophage phi 6 is enveloped within a lipid-containing membrane. The membrane is composed of proteins P3, P6, P9, P10, and P13 and phospholipids. The relationship between membrane protein P9 and morphogenetic protein P12 was studied in the absence of phage infection. cDNA copies of genes 9 and 12 were expressed on plasmids in Pseudomonas syringae pv. phaseolicola. Immunoblotting demonstrated the presence of protein P9 in strains carrying both gene 9 and gene 12 but not in strains with gene 9 alone. In the absence of P12, P9 was found to be unstable. Simultaneous synthesis of proteins P9 and P12 led to the formation of a low-density P9 particle having a buoyant density similar to that of precursor structures composed of phospholipid and proteins isolated from phi 6-infected cells. These results are consistent with results of previous genetic experiments suggesting that P9 and P12 are necessary and sufficient for the formation of the phi 6 envelope. Extensions of P9 at the C terminus do not impair particle formation; however, N-terminal extensions or C-terminal deletions that extend into the hydrophobic region of P9 do impair particle formation.  相似文献   

16.
The mitochondrial ribosome (mitoribosome) is a multicomponent machine that has unique structural features. Biogenesis of the human mitoribosome includes correct maturation and folding of the mitochondria-encoded RNA components (12S and 16S mt-rRNAs, and mt-tRNAVal) and their assembly together with 82 nucleus-encoded mitoribosomal proteins. This complex process requires the coordinated action of multiple assembly factors. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided detailed insights into the specific functions of several mitoribosome assembly factors and have defined their timing. In this review we summarize mitoribosomal small (mtSSU) and large subunit (mtLSU) biogenesis based on structural findings, and we discuss potential crosstalk between mtSSU and mtLSU assembly pathways as well as coordination between mitoribosome biogenesis and other processes involved in mitochondrial gene expression.  相似文献   

17.
With more than 800 members, the G protein-coupled receptor family constitutes the largest group of membrane proteins involved in signal transduction. Until the end of last year, high-resolution three-dimensional structures were available for only one of them--the light receptor rhodopsin. Recently the structure of the beta(2)-adrenergic receptor has been obtained, and it revealed interesting differences with the structure of rhodopsin. Analyses of these differences raise important questions about the binding modes of diffusible ligands in the receptor and allow formulation of testable hypotheses about the structural determinants linking drug binding to specific signaling responses. The three-dimensional structure derived from the beta(2)-adrenergic receptor crystal has been used to virtually dock ligands with distinct activities. The different binding modes of these ligands, which correlated with their reported efficacy profiles, suggest that it could be possible to predict the structural determinants of drug signaling efficacies.  相似文献   

18.
The icosahedral bacteriophage PM2 has a circular double-stranded DNA (dsDNA) genome and an internal lipid membrane. It is the only representative of the Corticoviridae family. How the circular supercoiled genome residing inside the viral membrane is translocated into the gram-negative marine Pseudoalteromonas host has been an intriguing question. Here we demonstrate that after binding of the virus to an abundant cell surface receptor, the protein coat is most probably dissociated. During the infection process, the host cell outer membrane becomes transiently permeable to lipophilic gramicidin D molecules proposing fusion with the viral membrane. One of the components of the internal viral lipid core particle is the integral membrane protein P7, with muralytic activity that apparently aids the process of peptidoglycan penetration. Entry of the virion also causes a limited depolarization of the cytoplasmic membrane. These phenomena differ considerably from those observed in the entry process of bacteriophage PRD1, a dsDNA virus, which uses its internal membrane to make a cell envelope-penetrating tubular structure.  相似文献   

19.
Several physical and chemical parameters of bacteriophage PM2 have been measured. The sedimentation constant was determined to be s-20,w=293 S. The buoyant density in sucrose at 20 degrees C was 1.24 g cm+-3 and in CsCl at 25 degrees C was 1.29 g cm-3. The high-speed equilibrium centrifugation method of Yphantis (1964) was used to measure the molecular weight of PM2. The necessary auxiliary parameters were also determined. A value of 0.771 plus or minus 0.005 cm-3 g-1 for the apparent specific volume at constant chemical potential in 1 M sodiium chloride has been obtained by pycnometry; the viral concentration was determined using the absorption coefficient at 260 nm (4.60 plus or minus 0.10 cm-2 mg-1), which in turn was calculated from the phosphorous content of the virus (17.89 plus or minus 0.28 mu-g of P per mg dry weight dry weight of virus). The molecular weight of PM2 determined with these parameters is (44.1 plus or minus 1.2 x 10-6). From the phosphorous content of the virus, the percentage of phosphorous known to be in its DNA (Camerini-Otero and Franklin, 1972), and the molecular weight of the bacteriophage, we have calculated a molecular weight for PM2 DNA of 6.26 x 10-6, which confirms values determined using empirical relationships.  相似文献   

20.
The DNA polymerase from phage phi29 is a B family polymerase that initiates replication using a protein as a primer, attaching the first nucleotide of the phage genome to the hydroxyl of a specific serine of the priming protein. The crystal structure of phi29 DNA polymerase determined at 2.2 A resolution provides explanations for its extraordinary processivity and strand displacement activities. Homology modeling suggests that downstream template DNA passes through a tunnel prior to entering the polymerase active site. This tunnel is too small to accommodate double-stranded DNA and requires the separation of template and nontemplate strands. Members of the B family of DNA polymerases that use protein primers contain two sequence insertions: one forms a domain not previously observed in polymerases, while the second resembles the specificity loop of T7 RNA polymerase. The high processivity of phi29 DNA polymerase may be explained by its topological encirclement of both the downstream template and the upstream duplex DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号