首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, parathyroid hormone (PTH) was shown to support survival of progenitor cells in bone marrow. The release of progenitor cells occurs in physiological and pathological conditions and was shown to contribute to neovascularization in tumors and ischemic tissues. In the present study we sought to investigate prospectively the effect of primary hyperparathyroidism (PHPT) on mobilization of bone marrow-derived progenitor cells. In 22 patients with PHPT and 10 controls, defined subpopulations of circulating bone marrow-derived progenitor cells (BMCs) were analyzed by flow cytometry (CD45(+)/CD34(+)/CD31(+) cells indicating endothelial progenitor cells, CD45(+)/CD34(+)/c-kit(+) cells indicating hematopoietic stem cells, and CD45(+)/CD34(+)/CXCR4(+) cells indicating progenitor cells with the homing receptor CXCR4). Cytokine serum levels (SCF, SDF-1, VEGF, EPO, and G-CSF) were assessed using ELISA. Levels of PTH and thyroid hormone as well as serum electrolytes, renal and liver parameters, and blood count were analyzed. Our data show for the first time a significant increase of circulating BMCs and an upregulation of SDF-1 and VEGF serum levels in patients with PHPT. The number of circulating BMCs returned to control levels measured 16.7 +/- 2.3 mo after surgery. There was a positive correlation of PTH levels with the number of CD45(+)/CD34(+)/CD31(+), CD45(+)/CD34(+)/c-kit(+), and CD45(+)/CD34(+)/CXCR4(+) cells. However, there was no correlation between cytokine serum concentrations (SDF-1, VEGF) and circulating BMCs. Serum levels of G-CSF, EPO, and SCF known to mobilize BMCs were even decreased or remained unchanged, suggesting a direct effect of PTH on stem cell mobilization. Our data suggest a new function of PTH mobilizing BMCs into peripheral blood.  相似文献   

2.
Zhu Z  Fu C  Li X  Song Y  Li C  Zou M  Guan Y  Zhu Y 《PloS one》2011,6(8):e23554
Prostaglandin E2 (PGE2) has been reported to modulate angiogenesis, the process of new blood vessel formation, by promoting proliferation, migration and tube formation of endothelial cells. Endothelial progenitor cells are known as a subset of circulating bone marrow mononuclear cells that have the capacity to differentiate into endothelial cells. However, the mechanism underlying the stimulatory effects of PGE2 and its specific receptors on bone marrow-derived cells (BMCs) in angiogenesis has not been fully characterized. Treatment with PGE2 significantly increased the differentiation and migration of BMCs. Also, the markers of differentiation to endothelial cells, CD31 and von Willebrand factor, and the genes associated with migration, matrix metalloproteinases 2 and 9, were significantly upregulated. This upregulation was abolished by dominant-negative AMP-activated protein kinase (AMPK) and AMPK inhibitor but not protein kinase, a inhibitor. As a functional consequence of differentiation and migration, the tube formation of BMCs was reinforced. Along with altered BMCs functions, phosphorylation and activation of AMPK and endothelial nitric oxide synthase, the target of activated AMPK, were both increased which could be blocked by EP4 blocking peptide and simulated by the agonist of EP4 but not EP1, EP2 or EP3. The pro-angiogenic role of PGE2 could be repressed by EP4 blocking peptide and retarded in EP4(+/-) mice. Therefore, by promoting the differentiation and migration of BMCs, PGE2 reinforced their neovascularization by binding to the receptor of EP4 in an AMPK-dependent manner. PGE2 may have clinical value in ischemic heart disease.  相似文献   

3.
The signals that direct pluripotent stem cell differentiation into lineage‐specific cells remain largely unknown. Here, we investigated the roles of BMP on vascular progenitor development from human embryonic stem cells (hESCs). In a serum‐free condition, hESCs sequentially differentiated into CD34+CD31?, CD34+CD31+, and then CD34?CD31+ cells during vascular cell development. CD34+CD31+ cells contained vascular progenitor population that gives rise to endothelial cells and smooth muscle cells. BMP4 promoted hESC differentiation into CD34+CD31+ cells at an early stage. In contrast, TGFβ suppressed BMP4‐induced CD34+CD31+ cell development, and promoted CD34+CD31? cells that failed to give rise to either endothelial or smooth muscle cells. The BMP‐Smad inhibitor, dorsomorphin, inhibited phosphorylation of Smad1/5/8, and blocked hESC differentiation to CD34+CD31+ progenitor cells, suggesting that BMP Smad‐dependent signaling is critical for CD34+CD31+ vascular progenitor development. Our findings provide new insight into how pluripotent hESCs differentiate into vascular cells. J. Cell. Biochem. 109: 363–374, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Role of Apolipoprotein A-Ⅰ in Protecting against Endotoxin Toxicity   总被引:6,自引:0,他引:6  
High density lipoprotein (HDL) binds lipopolysaccharide (LPS or endotoxin) and neutralizes its toxicity. We investigated the function of Apolipoprotein A-I (ApoA-I), a major apolipoprotein in HDL, in this process. Mouse macrophages were incubated with LPS, LPS+ApoA-I, LPS+ApoA-I+LFF (lipoprotein-free plasma fraction d>1.210 g/ml), LPS+HDL, LPS+HDL+LFF, respectively. MTT method was used to detect the mortality of L-929 cells which were attacked by the release-out cytokines in LPS-activated macrophages. It was found that ApoA-I significantly decreased L-929 cells mortality caused by LPS treatment (LPS vs. LPS+ApoA-I, P<0.05) and this effect became even more significant when LFF was utilized (LPS vs. LPS+ApoA-I+LFF, P<0.01; LPS vs. LPS+HDL+LFF, P<0.01). There was no significant difference between LPS+ApoA-I+LFF and LPS+HDL+LFF treatment, indicating that ApoA-I was the main factor. We also investigated in vivo effects of ApoA-I on mouse mortality rate and survival time after LPS administration. We found that the mortality in LPS+ApoA-I group (20%) and in LPS+ApoA-I+LFF group (10%) was significantly lower than that in LPS group (80%) (P<0.05, P<0.01, respectively); the survival time was (43.20 +/- 10.13) h in LPS+ApoA-I group and (46.80 +/- 3.79) h in LPS+ApoA-I+LFF group, which were significantly longer than that in LPS group (16.25 +/- 17.28) h (P<0.01). We also carried out in vitro binding study to investigate the binding capacity of ApoA-I and ApoA-I+LFF to fluorescence labeled LPS (FITC-LPS). It was shown that both ApoA-I and ApoA-I+LFF could bind with FITC-LPS, however, the binding capacity of ApoA-I+LFF to FITC-LPS (64.47 +/- 8.06) was significantly higher than that of ApoA-I alone (24.35 +/- 3.70) (P<0.01). The results suggest that: (1) ApoA-I has the ability to bind with and protect against LPS; (2) LFF enhances the effect of ApoA-I; (3) ApoA-I is the major contributor for HDL anti-endotoxin function.  相似文献   

5.
Mogilenko  D. A.  Shavva  V. S.  Dizhe  E. B.  Orlov  S. V. 《Molecular Biology》2019,53(3):427-437
Molecular Biology - Human apolipoprotein A-I (ApoA-I) is a major structural and functional protein component of high-density lipoprotein (HDL). ApoA-I constitutes ~75% of the protein content of...  相似文献   

6.
High density lipoprotein (HDL) and its main protein component apolipoprotein A-I (ApoA-I) have multiple anti-atherogenic functions. Some of them are exerted within the vessel wall, so that HDL needs to pass the endothelial barrier. To elucidate their itinerary through endothelial cells (ECs), we labelled ApoA-I and HDL either fluorescently or with 1.4 nm nanogold and investigated their cellular localization by using immunofluorescent microscopy (IFM) and electron microscopy (EM). HDL as well as ApoA-I is taken up by ECs into the same route of intracellular trafficking. Time kinetics and pulse chase experiments revealed that HDL is trafficked through different vesicles. HDL partially co-localized with LDL, albumin, and transferrin. HDL did not co-localize with clathrin and caveolin-1. Fluorescent HDL was recovered at small proportions in early endosomes and endosome to trans-golgi network vesicles but not at all in recycling endosomes, in late endosomes or lysosomes. EM identified HDL mainly in large filled vesicles which however upon IFM did not colocalize with markers of multivesicular bodies or autophagosomes. The uptake or cellular distribution of HDL was altered upon pharmacological interference with cytochalasine D, colchicine and dynasore. Blockage of fluid phase uptake with Amiloride or EIPA did not reduce the uptake of HDL. Neither did we observe any co-localization of HDL with dextran as the marker of fluid phase uptake. In conclusion, HDL and ApoA-I are internalized and trafficked by endothelial cells through a non-classical endocytic route.  相似文献   

7.
Only 5 to 10% of the apolipoprotein A-I (ApoA-I) of intact high density lipoprotein (HDL) is detectable by radioimmunoassay. In addition, when isolated ApoA-I is recombined with lipids in vitro, its immunologic reactivity is decreased by 30 to 95%. Thus, ApoA-I is less reactive immunologically in the presence of lipids. Our aim was to ascertain whether the COOH- or NH2-terminal regions of ApoA-I were equally reactive in intact HDL2. CNBr fragments of ApoA-I were produced by the method of Baker et al. (Baker, H.N., Jackson, R.L., and Gotto, A.M. (1973) Biochemistry 12, 3866-3871) and iodinated with lactoperoxidase. Double-antibody radioimmunoassays were set up using anti ApoA-I antisera and 125I-CNBr I (COOH-terminal region) or 125I-CNBr II (NH2-terminal). Both labels were bound by the antisera. Affinity columns were prepared by binding CNBr I or CNBr II to Sepharose 4B. Antibodies specific against CNBr I or CNBr II were isolated by means of these columns, suggesting that ApoA-I had at least two antigenic sites. In other assays using labeled fragments and anti ApoA-I antisera, 125I-CNBr I was displaced by CNBr I, ApoA-I , and HDL2 but not CNBr II. Conversely, 125I-CNBr II was displaced by CNBr II, ApoA-I, and HDL2 but not by CNBr I. Thus the assays were region-specific. The reactivities of isolated ApoA-I and the ApoA-I in intact HDL2-ApoA-I) were compared in these assays. On a molar basis, HDL2-ApoA-I was consistently more reactive (2- to 5-fold) in the 125I-CNBr I than in the 125I-CNBr II assays. The findings suggest (a) that the two terminal regions of ApoA-I are immunologically distinct, (b) that the two regions can be assayed independently of each other in intact HDL2, and (c) that the COOH-terminal region is more reactive immunologically than is the NH2-terminal. The results are compatible with a more "exposed" position for the COOH-terminal region on the surface of HDL2.  相似文献   

8.
Liao XL  Lou B  Ma J  Wu MP 《Life sciences》2005,77(3):325-335
High density lipoprotein (HDL) has anti-inflammatory function. To investigate the effects of apolipoprotein A-I (ApoA-I), the major apolipoprotein of HDL, on activated neutrophils, we stimulated neutrophils in vitro with fMLP and PMA, as a receptor-binding and a nonreceptor-binding stimuli, respectively, and incubated ApoA-I with those neutrophils. Three conditions were utilized: 1) resting neutrophils + ApoA-I (0, 2.5,5, 10 microg/mL respectively), 2) fMLP(10(-7) mol/L)-activated neutrophils + ApoA-I (0, 2.5, 5, 10 microg/mL respectively), and 3) PMA(10(-7) mol/L)-activated neutrophils + ApoA-I (0, 2.5, 5, 10 microg/mL respectively). After incubation, we measured neutrophils adhesion to fibronectin, oxidative bust (O2- and H2O2 production), degranulation (release of MPO and elastase), and L929 cell mortality which were attacked by release-out of cytokines in activated neutrophils (using MTT). Our results showed that in vitro ApoA-I inhibits fMLP- and PMA- activated neutrophil adhesion, oxidative burst, degranulation and L929 cell mortality. These inhibition effects of ApoA-I on fMLP-activated neutrophils are more powerful than that on PMA-activated neutrophils. ApoA-I has no effect on resting neutrophils. We concluded that ApoA-I could diminish the function of activated neutrophils.  相似文献   

9.
Yan YJ  Li Y  Lou B  Wu MP 《Life sciences》2006,79(2):210-215
High density lipoprotein (HDL) binds lipopolysaccharide (LPS) and neutralizes its toxicity. The aim of our study was to investigate the effects of Apolipoprotein (ApoA-I), the major apolipoprotein of HDL, on LPS-induced acute lung injury (ALI) and endotoxemia. BALB/c mice were challenged with LPS, followed by ApoA-I or saline administration for 24h. The mice were then sacrificed and histopathological analysis of the lung was performed. We found that ApoA-I could attenuate LPS-induced acute lung injury and inflammation. To investigate the mechanisms, we measured tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) levels in the serum and bronchoalveolar lavage (BAL) fluid and found that ApoA-I could significantly inhibit LPS-induced increases in the IL-1beta and TNF-alpha levels in serum (P<0.05, respectively), as well as in the IL-1beta, TNF-alpha, and IL-6 levels in BAL fluid (P<0.01 and P<0.05, P<0.05, respectively). Moreover, we evaluated the effect of ApoA-I on the mortality of L-929 cells which were attacked by LPS-activated peritoneal macrophages. We found that ApoA-I could significantly inhibit the LPS-induced cell death in a dose-dependent fashion. Furthermore, we investigated in vivo the effects of ApoA-I on the mortality rate and survival time after LPS administration and found that ApoA-I significantly decreased the mortality (P<0.05) and increased the survival time (P<0.05). In summary, the results suggest that ApoA-I could effectively protect against LPS-induced endotoxemia and acute lung damage. The mechanism might be related to inhibition of inflammatory cytokine release from macrophages.  相似文献   

10.
Osteoclasts (OCs) are large, multinucleated bone resorbing cells originating from the bone marrow myeloid lineage, and share a common progenitor with macrophages and dendritic cells. Bone marrow cells (BMCs) are a common source for in vitro osteoclastogenesis assays but are a highly heterogeneous mixture of cells. Protocols for in vitro osteoclastogenesis vary considerably thus hindering interpretation and comparison of results between studies. Macrophage colony-stimulating factor (M-CSF) pretreatment is commonly used to expand OC progenitors (OCPs) in BMC cultures before in vitro differentiation. However, the failure of osteoclastogenesis of M-CSF primed bone marrow myeloid blasts has been reported. In this study, we used a simple method of differential adherence to plastic to enrich OCP from mouse BMCs. We found that M-CSF pretreatment of plastic-adherent BMCs (adBMCs) increased the number of CD11b-F4/80+ macrophages and decreased the number of CD11b+ monocytes resulting in decreased OC formation. M-CSF pretreatment of purified c-Kit+ progenitors weakly inhibited OC formation, whereas M-CSF pretreatment of purified c-Kit-CD11b+ progenitors promoted the formation of large OC. M-CSF pretreatment increased the proliferation of both purified c-Kit+ and c-Kit-CD11b+ cells and increased the percentage of CD11b-F4/80+ cells from c-Kit+ progenitors. In addition, M-CSF pretreatment increased the percentage of CD11b+ F4/80− cells from purified c-Kit-CD11b+ cells. M-CSF pretreatment increased the percentage of CD14 + CD16 + intermediate monocytes and subsequent OC formation from human 2adBMCs, and increased OC formation of purified CD14 + cells. Together, these results indicate that in vitro OCP expansion in the presence of M-CSF and bone marrow stromal cells is dependent upon the developmental stage of myeloid cells, in which M-CSF favors macrophage differentiation of multipotent progenitors, promotes monocyte maturation and supports differentiation of late-stage OCP cells.  相似文献   

11.
High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis.  相似文献   

12.
Haptoglobin (Hpt) was previously found to bind the high density lipoprotein (HDL) apolipoprotein A-I (ApoA-I) and able to inhibit the ApoA-I-dependent activity of the enzyme lecithin:cholesterol acyltransferase (LCAT), which plays a major role in the reverse cholesterol transport. The ApoA-I structure was analyzed to detect the site bound by Hpt. ApoA-I was treated by cyanogen bromide or hydroxylamine; the resulting fragments, separated by electrophoresis or gel filtration, were tested by Western blotting or enzyme-linked immunosorbent assay for their ability to bind Hpt. The ApoA-I sequence from Glu113 to Asn184 harbored the binding site for Hpt. Biotinylated peptides were synthesized overlapping such a sequence, and their Hpt binding activity was determined by avidin-linked peroxidase. The highest activity was exhibited by the peptide P2a, containing the ApoA-I sequence from Leu141 to Ala164. Such a sequence contains an ApoA-I domain required for binding cells, promoting cholesterol efflux, and stimulating LCAT. The peptide P2a effectively prevented both binding of Hpt to HDL-coated plastic wells and Hpt-dependent inhibition of LCAT, measured by anti-Hpt antibodies and cholesterol esterification activity, respectively. The enzyme activity was not influenced, in the absence of Hpt, by P2a. Differently from ApoA-I or HDL, the peptide did not compete with hemoglobin for Hpt binding in enzyme-linked immunosorbent assay experiments. The results suggest that Hpt might mask the ApoA-I domain required for LCAT stimulation, thus impairing the HDL function. Synthetic peptides, able to displace Hpt from ApoA-I without altering its property of binding hemoglobin, might be used for treatment of diseases associated with defective LCAT function.  相似文献   

13.
Gu SS  Shi N  Wu MP 《Life sciences》2007,81(9):702-709
It is well established that reperfusion of heart is the optimal method for salvaging ischemic myocardium, however, the success of this therapy could be limited by reperfusion injury, which is involved in inflammatory responses. High density lipoprotein (HDL) has an anti-inflammatory function and can protect the heart from ischemia-reperfusion (I/R) injury. In this study, we investigated the cardioprotective role of apolipoprotein A-I (ApoA-I), the major apolipoprotein of HDL, in I/R injury. Using rats subjected to myocardial I/R by ligation of left anterior descending coronary artery (LAD), we found that administration of ApoA-I (20 mg/kg, iv) before the onset of reperfusion of myocardial infarction can significantly reduce serum creatine kinase (CK) levels (62.1+/-13.8%, p<0.01) and heart TNF-alpha as well as IL-6 levels, compared with saline controls (40.4+/-14.7%, 44+/-9.8%, p<0.01 respectively). Moreover, ApoA-I treatment suppresses the expression of ICAM-1 on endothelium, thus diminishing neutrophil adherence, transendothelial migration, and the subsequent myocyte injury. We concluded that ApoA-I could effectively protect rat heart from I/R injury.  相似文献   

14.
High density lipoproteins (HDL) consist of a mixture of chemically and functionally distinct families of particles defined by their characteristic apolipoprotein (Apo) composition. The two major lipoprotein families are lipoprotein A-I (LP-A-I) and lipoprotein A-I:A-II (LP-A-I:A-II). This study describes the isolation of a third minor HDL family of particles referred to as lipoprotein A-II (LP-A-II) because it lacks ApoA-I and contains ApoA-II as its main or sole apolipoprotein constituent. Because ApoA-II is an integral protein constituent of three distinct lipoprotein families (LP-A-I:A-II, LP-A-II: B:C:D:E and LP-A-II), LP-A-II particles were isolated from whole plasma by sequential immunoaffinity chromatography on immunosorbers with antisera to ApoA-II, ApoB and ApoA-I, respectively. In normolipidemic subjects, the concentration of LP-A-II particles, based on ApoA-II content, is 4-18 mg/dl accounting for 5-20% of the total ApoA-II not associated with ApoB-containing lipoproteins. The lipid composition of LP-A-II particles is characterized by low percentage of triglycerides and cholesterol esters and a high percentage of phospholipids in comparison with lipid composition of LP-A-I and LP-A-II: A-II. The major part of LP-A-II particles contain ApoA-II as the sole apolipoprotein constituent; however, small subsets of LP-A-II particles may also contain ApoD and other minor apolipoproteins. The lipid/protein ratio of LP-A-II is higher than those of LP-A-I and LP-A-I:A-II. In homozygous ApoA-I and ApoA-I/ApoC-III deficiencies, LP-A-II particles are the only ApoA-containing high density lipoprotein with levels found to be within the same range (7-13 mg/dl) as those of normolipidemic subjects. However, in contrast to normal LP-A-II, their lipid composition is characterized by higher percentages of triglycerides and cholesterol esters and a lower percentage of phospholipids and their apolipoprotein composition by the presence of ApoC-peptides and ApoE in addition to ApoA-II and ApoD. These results show that LP-A-II particles are a minor HDL family and suggest that, in the absence of ApoA-I-containing lipoproteins, they become an efficient acceptor/donor of ApoC-peptides and ApoE required for a normal metabolism of triglyceride-rich lipoproteins. Their other possible functional roles in lipid transport remain to be established in future experiments.  相似文献   

15.
The therapeutic rationale for tissue repair and regeneration using stem cells is at its infancy and needs advancement in understanding the role of individual component’s innate capability. As stem cells of adipose tissue reside in a more heterogeneous population of stromal vascular fractions, cell separation or sorting becomes an eminent step towards revealing their unique properties. This study elucidates the comparative efficacy of lineage depleted adipose derived stromal vascular fraction (SVF) and their innate ability using magnetic activated cell sorter (MACS). To this end, isolated SVF from human adipose tissue was lineage depleted according to the manufacturer’s instructions using specific antibody cocktail through MACS. The enriched lineage negative (lin−) and lineage positive (lin+) cell fractions were cultured, phenotypically characterized for the panel of cell surface markers using flowcytometry and subjected to osteoblastic and adipogenic differentiation. The expression profile obtained for lin− cells was CD34−/CD45−/HLADR−/CD49d−/CD140b−/CD31−/CD90+/CD105+/CD73+/CD54+/CD166+/CD117− when compared to Lin+ cells expressing CD34+/CD45+/HLADR−/CD49d−/CD140b+/CD31−/CD90+/CD105+/CD73+/CD54+/CD166+/CD117+ (CD—cluster of differentiation). These results, thus, advances our understanding on the inherent property of the individual cell population. Furthermore, both the fractions exhibited mesodermal lineage differentiation capacity. To conclude, this research pursuit rationalized the regenerative therapeutic applicability of both lin− and lin+ cultures of human adipose tissue for disorders of mesodermal, haematological and vascular origin.  相似文献   

16.
Apolipoprotein A-I (ApoA-I), a major component of HDL, binds haptoglobin, a plasma protein transporting to liver or macrophages free Hb for preventing hydroxyl radical production. This work aimed to assess whether haptoglobin protects ApoA-I against this radical. Human ApoA-I structure, as analyzed by electrophoresis and MS, was found severely altered by hydroxyl radicals in vitro. Lower alteration of ApoA-I was found when HDL was oxidized in the presence of haptoglobin. ApoA-I oxidation was limited also when the complex of haptoglobin with both high-density lipoprotein and Hb, immobilized on resin beads, was exposed to hydroxyl radicals. ApoA-I function to stimulate cholesterol esterification was assayed in vitro by using ApoA-I-containing liposomes. Decreased stimulation was observed when liposomes oxidized without haptoglobin were used. Conversely, after oxidative stress in the presence of haptoglobin (0.5 microM monomer), the liposome activity did not change. Plasma of carrageenan-treated mice was analyzed by ELISA for the levels of haptoglobin and ApoA-I, and used to isolate HDL for MS analysis. Hydroxyproline-containing fragments of ApoA-I were found associated with low levels of haptoglobin (18 microM monomer), whereas they were not detected when the haptoglobin level increased (34-70 microM monomer). Therefore haptoglobin, when circulating at enhanced levels with free Hb during the acute phase of inflammation, might protect ApoA-I structure and function against hydroxyl radicals.  相似文献   

17.
The chemokine stromal cell-derived factor-1 (SDF-1) plays a critical role in mobilizing precursor cells in the bone marrow and is essential for efficient vascular regeneration and repair. We recently reported that calcium augments the expression of chemokine receptor CXCR4 and enhances the angiogenic potential of bone marrow derived cells (BMCs). Neovascularization is impaired by aging therefore we suggested that aging may cause defects of CXCR4 expression and cellular responses to calcium. Indeed we found that both the basal and calcium-induced surface expression of CXCR4 on BMCs was significantly reduced in 25-month-old mice compared with 2-month-old mice. Reduced Ca-induced CXCR4 expression in BMC from aged mice was associated with defective calcium influx. Diminished CXCR4 surface expression in BMC from aged mice correlated with diminished neovascularization in an ischemic hindlimb model with less accumulation of CD34(+) progenitor cells in the ischemic muscle with or without local overexpression of SDF-1. Intravenous injection of BMCs from old mice homed less efficiently to ischemic muscle and stimulated significantly less neovascularization compared with the BMCs from young mice. Transplantation of old BMCs into young mice did not reconstitute CXCR4 functions suggesting that the defects were not reversible by changing the environment. We conclude that defects of basal and calcium-regulated functions of the CXCR4/SDF-1 axis in BMCs contribute significantly to the age-related loss of vasculogenic responses.  相似文献   

18.
Liposuction aspirates (primarily saline solution, blood, and adipose tissue fragments) separate into fatty and fluid portions. Cells isolated from the fatty portion are termed processed lipoaspirate (PLA) cells and contain adipose-derived adherent stromal cells (ASCs). Here we define cells isolated from the fluid portion of liposuction aspirates as liposuction aspirate fluid (LAF) cells. Stromal vascular fractions (SVF) were isolated separately from both portions and characterized under cultured and non-cultured conditions. A comparable number of LAF and PLA cells were freshly isolated, but fewer LAF cells were adherent. CD34+ CD45- cells from fresh LAF isolates were expanded by adherent culture, suggesting that LAF cells contain ASCs. Although freshly isolated PLA and LAF cells have distinct cell surface marker profiles, adherent PLA and LAF cells have quite similar characteristics with regard to growth kinetics, morphology, capacity for differentiation, and surface marker profiles. After plating, both PLA and LAF cells showed significant increased expression of CD29, CD44, CD49d, CD73, CD90, CD105, and CD151 and decreased expression of CD31 and CD45. Multicolor FACS analysis revealed that SVF are composed of heterogeneous cell populations including blood-derived cells (CD45+), ASCs (CD31- CD34+ CD45- CD90+ CD105- CD146-), endothelial (progenitor) cells (CD31+ CD34+ CD45- CD90+ CD105low CD146+), pericytes (CD31- CD34- CD45- CD90+ CD105- CD146+), and other cells. After plating, ASCs showed a dramatic increase in CD105 expression. Although some adherent ASCs lost CD34 expression with increasing culture time, our culture method maintained CD34 expression in ASCs for at least 10-20 weeks. These results suggest that liposuction-derived cells may be useful and valuable for cell-based therapies.  相似文献   

19.
Rat luteal cells utilize high-density lipoproteins (HDL) as a source of cholesterol for steroid synthesis. Both the free and esterified cholesterol of HDL are utilized by these cells. In this report, we have examined the relative uptake of free and esterified cholesterol of HDL by cultured rat luteal cells. Incubation of the cells with HDL labeled with [3H]cholesterol or [3H]cholesteryl linoleate resulted in 4-6-fold greater uptake of the free cholesterol compared to esterified cholesterol. The increased uptake of free cholesterol correlated with its utilization for progestin synthesis: utilization of HDL-derived free cholesterol was 3-6-fold higher than would be expected from its concentration in HDL. The differential uptake and utilization of free and esterified cholesterol was further examined using egg phosphatidylcholine liposomes containing cholesterol or cholesteryl linoleate as a probe. Liposomes containing free cholesterol were able to deliver cholesterol to luteal cells and support steroid synthesis in the absence of apolipoproteins, and the addition of apolipoprotein A-I (apo A-I) moderately increased the uptake and steroidogenesis. Similar experiments using cholesteryl linoleate/egg phosphatidylcholine liposomes showed that inclusion of apo A-I resulted in a pronounced increase in the uptake of cholesteryl linoleate and progestin synthesis. These experiments suggest that free cholesterol from HDL may be taken up by receptor-dependent and receptor-independent processes, whereas esterified cholesterol uptake requires a receptor-dependent process mediated by apolipoproteins.  相似文献   

20.
Diseases caused by dengue virus (DV) infection vary in severity, with symptoms ranging from mild fever to life threatening dengue hemorrhage fever (DHF) and dengue shock syndrome (DSS). Clinical studies have shown that significant decrease in the level of lipoproteins is correlated with severe illness in DHF/DSS patients. Available evidence also indicates that lipoproteins including high-density lipoprotein (HDL) and low-density lipoprotein (LDL) are able to facilitate cell entry of HCV or other flaviviruses via corresponding lipoprotein receptors. In this study, we found that pre-incubation of DV with human serum leads to an enhanced DV infectivity in various types of cells. Such enhancement could be due to interactions between serum components and DV particles. Through co-immunoprecipitation we revealed that apolipoprotein A-I (ApoA-I), the major protein component in HDL, is associated with DV particles and is able to promote DV infection. Based on that observation, we further found that siRNA knockdown of the scavenger receptor class B type I (SR-BI), the cell receptor of ApoA-I, abolished the activity of ApoA-I in enhancement of DV infection. This suggests that ApoA-I bridges DV particles and cell receptor SR-BI and facilitates entry of DV into cells. FACS analysis of cell surface dengue antigen after virus absorption further confirmed that ApoA-I enhances DV infection via promoting initial attachment of the virus to cells. These findings illustrate a novel entry route of DV into cells, which may provide insights into the functional importance of lipoproteins in dengue pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号