首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了不同碳源对Candidaglycerinogenes的菌体生长、发酵液pH值及代谢产物的影响,结果发现以葡萄糖、果糖等单糖为碳源时茵体生长较快,最终生物量比以蔗糖、麦芽糖等二糖为碳源时高20%~30%;导致发酵前12h发酵液pH值明显下降的主要因素是乳酸;与葡萄糖为碳源转化为甘油相比,果糖为碳源时更易累积乙醇;以蔗糖、麦芽糖为碳源时,用于转化生成甘油的碳源明显降低,碳源主要用于茵体自身生物合成及HMP途径,以蔗糖为碳源时,用于乳酸、丙酸及柠檬酸生物合成的碳源较麦芽糖明显提高,TCA途径代谢较为活跃。  相似文献   

2.

Purpose  

Recently, the Thai government has been advancing the expanded use of biomass as an alternative source of energy substituting it for the fossil fuels that have been shown to be harmful to the environment. Rice husk, one of the main sources of biomass in Thailand, has already been used as an energy source in many different applications and has been successful in reducing the consumption of fossil fuels. At present (2011), the main use of rice husk in Thailand is as fuel to generate electricity. However, rice husk can potentially be used to produce other forms of energy such as cellulosic ethanol. This paper compares the environmental performance of the current main use of rice husk for energy purposes in the Thai context, i.e., for electricity generation with the prospective use, i.e., for cellulosic ethanol production. The results from this study will identify the more environmentally friendly option for use of rice husk for energy purposes.  相似文献   

3.
Studies were conducted to evaluate carbon and energy sources suitable to support hexavalent chromium (Cr(VI)) reduction by a bacterial consortium enriched from dichromate-contaminated aquifer sediments. The consortium was cultured under denitrifying conditions in a minimal, synthetic groundwater medium that was amended with various individual potential carbon and energy sources. The effects of these individual carbon and energy sources on Cr(VI) reduction and growth were measured. The consortium was found to readily reduce Cr(VI) with sucrose, acetate, L-asparagine, hydrogen plus carbon dioxide, ethanol, glycerol, glycolate, propylene glycol, or D-xylose as a carbon and energy source. Minimal Cr(VI) reduction was observed when the consortium was cultured with citrate, 2-ketoglutarate, L-lactate, pyruvate, succinate, or thiosulfate plus carbon dioxide as a carbon and energy source when compared with abiotic controls. The consortium grew on all of the above carbon and energy sources, with the highest cell densities reached using D-xylose and sucrose, demonstrating that the consortium is metabolically diverse and can reduce Cr(VI) using a variety of different carbon and energy sources. The results suggest that the potential exists for the enrichment of Cr(VI)-reducing microbial populations in situ by the addition of a sucrose-containing feedstock such as molasses, which is an economical and readily available carbon and energy source.  相似文献   

4.
5.
《Biotechnology advances》2019,37(6):107378
Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as ‘non-fermentable’ for the yeast S. cerevisiae.  相似文献   

6.
The rapidly expanding market for biodiesel has increased the supply and reduced the cost of glycerol, making it an attractive sustainable feed stock for the fuel and chemical industry. Glycerol-based biorefinery is the microbial fermentation of crude glycerol to produce fuels and chemicals. A major challenge is to obtain microbes tolerant to inhibitors such as salts and organic solvents present in crude glycerol. Microbial screening was attempted to isolate novel strain capable of growing on crude glycerol as a sole carbon source. The newly isolated bacteria, identified as nonpathogenic Kluyvera cryocrescens S26 could convert biodiesel-derived crude glycerol to ethanol with high yield and productivity. The supplementation of nutrients such as yeast extract resulted in distinguished enhancement in cell growth as well as ethanol productivity under anaerobic condition. When glycerol fermentation is performed under microaerobic condition, there is also a remarkable improvement in cell growth, ethanol productivity and yield, compared with those under strict anaerobic condition. In batch fermentation under microaerobic condition, K. cryocrescens S26 produced 27 g/l of ethanol from crude glycerol with high molar yield of 80% and productivity of 0.61 g/l/h.  相似文献   

7.
Cardiolipin is a unique dimeric phospholipid, which is present throughout the eukaryotic kingdom and is specifically localized in mitochondrial membranes. It is widely believed that mitochondria possess an essential requirement for this phospholipid. To determine whether cardiolipin is essential for yeast growth, we generated a cardiolipin synthase null mutant by disrupting the CLS1 gene (open reading frame YDL142c on chromosome IV) of Saccharomyces cerevisiae . Biochemical analysis of the mutant indicated that it had no cardiolipin synthase activity and no cardiolipin in its membranes. The enzyme phosphatidylglycerolphosphate synthase, which catalyses the committed step of the cardiolipin pathway, remained unaffected in the null mutant. Haploid cells containing the null allele are viable in media containing glucose, galactose or glycerol/ethanol as the sole carbon source, although growth in galactose or glycerol/ethanol is somewhat reduced in the mutant compared with the wild type. These results indicate that cardiolipin is not essential for the growth of S . cerevisiae in fermentable or non-fermentable carbon sources.  相似文献   

8.
Thermoanaerobacter mathranii can produce ethanol from lignocellulosic biomass at high temperatures, but its biotechnological exploitation will require metabolic engineering to increase its ethanol yield. With a cofactor-dependent ethanol production pathway in T. mathranii, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol yield beyond that obtained with glucose and xylose. The ldh gene coding for lactate dehydrogenase was previously deleted from T. mathranii to eliminate an NADH oxidation pathway. To further facilitate NADH regeneration used for ethanol formation, a heterologous gene gldA encoding an NAD+-dependent glycerol dehydrogenase was expressed in T. mathranii. One of the resulting recombinant strains, T. mathranii BG1G1 (Δldh, P xyl GldA), showed increased ethanol yield in the presence of glycerol using xylose as a substrate. With an inactivated lactate pathway and expressed glycerol dehydrogenase activity, the metabolism of the cells was shifted toward the production of ethanol over acetate, hence restoring the redox balance. It was also shown that strain BG1G1 acquired the capability to utilize glycerol as an extra carbon source in the presence of xylose, and utilization of the more reduced substrate glycerol resulted in a higher ethanol yield.  相似文献   

9.
Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production.  相似文献   

10.
11.
Nowadays, bacterial cellulose has played more and more important role as new biological material for food industry and medical and industrial products based on its unique properties. However, it is still a difficult task to improve the production of bacterial cellulose, especially a large number of byproducts are produced in the metabolic biosynthesis processes. To improve bacterial cellulose production, ethanol and sodium citrate are added into the medium during the fermentation, and the activities of key enzymes and concentration of extracellular metabolites are measured to assess the changes of the metabolic flux of the hexose monophosphate pathway (HMP), the Embden–Meyerhof–Parnas pathway (EMP), and the tricarboxylic acid cycle (TCA). Our results indicate that ethanol functions as energy source for ATP generation at the early stage of the fermentation in the HMP pathway and the supplementation of ethanol significantly reduces glycerol generation (a major byproduct). While in the EMP pathway, sodium citrate plays a key role, and its supplementation results in the byproducts (mainly acetic acid and pyruvic acid) entering the gluconeogenesis pathway for cellulose synthesis. Furthermore, by adding ethanol and sodium citrate, the main byproduct citric acid in the TCA cycle is also reduced significantly. It is concluded that bacterial cellulose production can be improved by increasing energy metabolism and reducing the formation of metabolic byproducts through the metabolic regulations of the bypasses.  相似文献   

12.
Klebsiella pneumoniae is a Gram-negative facultative anaerobe that metabolizes glycerol efficiently under both aerobic and anaerobic conditions. This microbe is considered an outstanding biocatalyst for transforming glycerol into a variety of value-added products. Crude glycerol is a cheap carbon source and can be converted by K. pneumoniae into useful compounds such as lactic acid, 3-hydroxypropionic acid, ethanol, 1,3-propanediol, 2,3-butanediol, and succinic acid. This review summarizes glycerol metabolism in K. pneumoniae and its potential as a microbial cell factory for the production of commercially important acids and alcohols. Although many challenges remain, K. pneumoniae is a promising workhorse when glycerol is used as the carbon source.  相似文献   

13.
Many yeast species can utilize glycerol, both as a sole carbon source and as an osmolyte. In Saccharomyces cerevisiae, physiological studies have previously shown the presence of an active uptake system driven by electrogenic proton symport. We have used transposon mutagenesis to isolate mutants affected in the transport of glycerol into the cell. Here we present the identification of YGL084c, encoding a multimembrane-spanning protein, as being essential for proton symport of glycerol into S. cerevisiae. The gene is named GUP1 (glycerol uptake) and, for growth on glycerol, is important as a carbon and energy source. In addition, in strains deficient in glycerol production it also provides osmotic protection by the addition of glycerol. Another open reading frame (ORF), YPL189w, presenting a high degree of homology to YGL084c, similarly appears to be involved in active glycerol uptake in salt-containing glucose-based media in strains deficient in glycerol production. Analogously, this gene is named GUP2. To our knowledge, this is the first report on a gene product involved in active transport of glycerol in yeasts. Mutations with the same phenotypes occurred in two other ORFs of previously unknown function, YDL074c and YPL180w.  相似文献   

14.
Growth and polymer synthesis were studied in a recombinant E. coli strain carrying phaBAC and phaP of Azotobacter sp. strain FA8 using different carbon sources and oxygen availability conditions. The results obtained with glucose or glycerol were completely different, demonstrating that the metabolic routes leading to the synthesis of the polymer when using glycerol do not respond to environmental conditions such as oxygen availability in the same way as they do when other substrates, such as glucose, are used. When cells were grown in a bioreactor using glucose the amount of polymer accumulated at low aeration was reduced by half when compared to high aeration, while glycerol cultures produced at low aeration almost twice the amount of polymer synthesized at the higher aeration condition. The synthesis of other metabolic products, such as ethanol, lactate, formate and acetate, were also affected by both the carbon source used and aeration conditions. In glucose cultures, lactate and formate production increased in low agitation compared to high agitation, while poly(3-hydroxybutyrate) synthesis decreased. In glycerol cultures, the amount of acids produced also increased when agitation was lowered, but carbon flow was mostly redirected towards ethanol and poly(3-hydroxybutyrate). These results indicated that carbon partitioning differed depending on both carbon source and oxygen availability, and that aeration conditions had different effects on the synthesis of the polymer and other metabolic products when glucose or glycerol were used.  相似文献   

15.
L André  A Hemming  L Adler 《FEBS letters》1991,286(1-2):13-17
Production of glycerol and a key enzyme in glycerol production, glycerol 3-phosphate dehydrogenase (NAD+) (GPD), was studied in Saccharomyces cerevisiae cultured in basal media or media of high salinity, with glucose, raffinose or ethanol as the sole carbon source. At high salinity, glycerol production was stimulated with all carbon sources and glycerol was accumulated to high intracellular concentration in cells grown on glucose and raffinose. Cells grown on ethanol accumulated glycerol to a lower level but showed an increased content of trehalose at high salinity. However, the trehalose concentration corresponded only to about 20% of the glycerol level, and did not compensate for the shortfall in intracellular osmolyte content. Immunoblot analysis demonstrated an increased production of GPD at high salinity. This increase was osmotically mediated but was lower when glycerol was substituted for NaCl or sorbitol as the stress-solute. The enzyme also appeared to be subject to glucose repression; the specific activity of GPD was significantly lower in cells grown on glucose, than on raffinose or ethanol.  相似文献   

16.
The majority of environmental problems arise from the use of conventional energy sources. The liability of such problems along with the reduction of fossil energy resources has led to the global need for alternative renewable energy sources. Using renewable biofuels as energy sources is of remarkable and continuously growing importance. Producing bioethanol through conversion of waste and residual biomass can be a viable and important perspective. In the first part of this review, general concepts, approaches and considerations concerning the utilization of the most important liquid biofuels, namely biodiesel and bioethanol, are presented. Unlike biodiesel (specifically first generation biodiesel), the production of bioethanol is exclusively based on the utilization of microbial technology and fermentation engineering. In the second part of this review, the biochemistry of ethanol production, with regards to the use of hexoses, pentoses or glycerol as carbon sources, is presented and critically discussed. Differences in the glycolytic pathways between the major ethanol‐producing strains (Saccharomyces cerevisiae and Zymomonas mobilis) are presented. Regulation between respiration and fermentation in ethanol‐producing yeasts, viz. effects “Pasteur”, “Crabtree”, “Kluyver” and “Custers”, is discussed. Xylose and glycerol catabolism related with bioethanol production is also depicted and commented. The technology of the fermentation is presented along with a detailed illustration of the substrates used in the process and in pretreatment of lignocellulosic biomass, and the various fermentation configurations employed (separate hydrolysis and fermentation, simultaneous saccharification and fermentation, simultaneous saccharification and co‐fermentation and consolidated bioprocessing). Finally, the production of bioethanol under non‐aseptic conditions is presented and discussed.  相似文献   

17.
To prevent the loss of raw material in ethanol production by anaerobic yeast cultures, glycerol formation has to be reduced. In theory, this may be done by providing the yeast with amino acids, since the de novo cell synthesis of amino acids from glucose and ammonia gives rise to a surplus of NADH, which has to be reoxidized by the formation of glycerol. An industrial strain of Saccharomyces cerevisiae was cultivated in batch cultures with different nitrogen sources, i.e., ammonium salt, glutamic acid, and a mixture of amino acids, with 20 g of glucose per liter as the carbon and energy source. The effects of the nitrogen source on metabolite formation, growth, and cell composition were measured. The glycerol yields obtained with glutamic acid (0.17 mol/mol of glucose) or with the mixture of amino acids (0.10 mol/mol) as a nitrogen source were clearly lower than those for ammonium-grown cultures (0.21 mol/mol). In addition, the ethanol yield increased for growth on both glutamic acid (by 9%) and the mixture of amino acids (by 14%). Glutamic acid has a large influence on the formation of products; the production of, for example, alpha-ketoglutaric acid, succinic acid, and acetic acid, increased compared with their production with the other nitrogen sources. Cultures grown on amino acids have a higher specific growth rate (0.52 h-1) than cultures of both ammonium-grown (0.45 h-1) and glutamic acid-grown (0.33 h-1) cells. Although the product yields differed, similar compositions of the cells were attained. The NADH produced in the amino acid, RNA, and extracellular metabolite syntheses was calculated together with the corresponding glycerol formation. The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential.  相似文献   

18.
Thin stillage is a by-product generated in large amounts during the production of ethanol that is rich in carbon sources like glycerol, glucose and maltose. Unfortunately, the fermentation of thin stillage results in a mixture of organic acids and ethanol and minimum utilization of glycerol, the latter a compound that can represent up to 80% of the available substrates in this stream. We report here the efficient production of ethanol from thin stillage by a metabolically engineered strain of Escherichia coli. Simultaneous utilization of glycerol and sugars was achieved by overexpressing either the fermentative or the respiratory glycerol-utilization pathway. However, amplification of the fermentative pathway (encoded by gldA and dhaKLM) led to more efficient consumption of glycerol and promoted the synthesis of reduced products, including ethanol. A previously constructed strain, EH05, containing mutations that prevented the accumulation of competing by-products (i.e. lactate, acetate, and succinate) and overexpressing the fermentative pathway for glycerol utilization [i.e. strain EH05 (pZSKLMgldA)], efficiently converted thin stillage supplemented with only mineral salts to ethanol at yields close to 85% of the theoretical maximum. Ethanol accounted for about 90% (w/w) of the product mixture. These results, along with the comparable performance of strain EH05 (pZSKLMgldA) in 0.5 and 5 l fermenters, indicate a great potential for the adoption of this process by the biofuels industry.  相似文献   

19.
Economic realities for the rising industrial biofuel production have changed substantially during the low oil price period starting in the mid 2010’s. Increased competition requires the sector to increase productivity through the reduction of low-value by-products and full utilization of all value and energy stored in their respective feedstock. Biodiesel is produced commercially from substrates such as animal fat and vegetable oil, generating approximately 10 wt% crude glycerol as its main, currently underutilized, by-product. This crude glycerol is contaminated with catalyst, soap, free fatty acids, glycerides and methyl esters; hence only a small fraction enters the existing glycerol markets, while the purification costs for the majority of crude glycerol are simply too high. However, this presents a unique opportunity to generate additional value. One technical possibility is to use crude glycerol as a carbon source for butanol production, a compound of higher value and energy, a potential additive for gasoline and diesel fuels and bulk chemical commodity. Conversion facilities could be co-located with biodiesel plants, utilizing established infrastructure and adding significant value and productivity to the existing biodiesel industry. This review focuses on the current activities geared towards the bioconversion of crude glycerol to butanol.  相似文献   

20.
Availability, low price, and high degree of reduction have made glycerol a highly attractive and exploited carbon source for the production of fuels and reduced chemicals. Here we report the quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli through the use of kinetic modeling and metabolic control analysis (MCA) to gain a better understanding of glycerol fermentation and identify key targets for genetic manipulation that could enhance product synthesis. The kinetics of glycerol fermentation in a batch culture was simulated using a dynamic model consisting of mass balances for glycerol, ethanol, biomass, and 11 intracellular metabolites, along with the corresponding kinetic expressions for the metabolism of each species. The model was then used to calculate metabolic control coefficients and elucidate the control structure of the pathways involved in glycerol utilization and ethanol synthesis. The calculated flux control coefficients indicate that the glycolytic flux during glycerol fermentation is almost exclusively controlled by the enzymes glycerol dehydrogenase (encoded by gldA) and dihydroxyacetone kinase (DHAK) (encoded by dhaKLM). In agreement with the MCA findings, overexpression of gldA and dhaKLM led to significant increase in glycerol utilization and ethanol synthesis fluxes. Moreover, overexpression of other enzymes involved in the pathways that mediate glycerol utilization and its conversion to ethanol had no significant impact on glycerol utilization and ethanol synthesis, further validating the MCA predictions. These findings were then applied as a means of increasing the production of ethanol: overexpression of glycerol dehyrdogenase and DHAK enabled the production of 20 g/L ethanol from crude glycerol, a by-product of biodiesel production, indicating the potential for industrial scale conversion of waste glycerol to ethanol under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号