首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process [1], [2], [3] and [4]. With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.  相似文献   

2.
In the Drosophila embryo, body wall muscles are formed by the fusion of two cell types, Founder Cells (FCs) and Fusion Competent Myoblasts (FCMs). Using an enhancer derived from the Dmef2 gene ([C/D]( *)), we report the first GAL4 driver specifically expressed in FCMs. We have determined that this GAL4 driver causes expression in a subset of FCMs and, upon fusion, in developing myotubes from stage 14 onwards. In addition, we have shown that using this Dmef2-5x[C/D]( *)-GAL4 driver to express dominant negative Rac in only FCMs causes a partial fusion block. This novel GAL4 driver will provide a useful reagent to study Drosophila myoblast fusion and muscle differentiation.  相似文献   

3.
4.
A fundamental step during Drosophila myogenesis is the specification of founder myoblasts (FMs). Founders possess the information required for the acquisition of muscle identity and for the execution of the myogenic programme, whereas fusion-competent myoblasts (FCMs) acquire this information after fusing to founders. Very little is known about genes that implement the execution of the myogenic programme. Here we characterise Mind bomb 2 (Mib2), a protein with putative E3 ubiquitin ligase activity that is exclusive of FMs and necessary for at least two distinct steps of the founder/myotube differentiation programme. Thus, in mib2 mutants, the early process of myoblast fusion is compromised, as FMs undergo a reduced number of rounds of fusion with FCMs. At later stages, with the onset of muscle contraction, many muscles degenerate, display aberrant sarcomeric structure and detach from tendons. The fusion process requires intact E3-RING-finger domains of Mib2 (the putative catalytic sites), probably to eliminate the FCM-specific activator Lmd from nascent myotubes. However, these sites appear dispensable for muscle integrity. This, and the subcellular accumulation of Mib2 in Z and M bands of sarcomeres, plus its physical interaction with nonmuscle myosin (a Z-band-localised protein necessary for the formation of myofibrils), suggest a structural role for Mib2 in maintaining sarcomeric stability. We suggest that Mib2 acts sequentially in myoblast fusion and sarcomeric stability by two separable processes involving distinct functions of Mib2.  相似文献   

5.
Myoblast fusion (a critical process by which muscles grow) occurs in a multi-step fashion that requires actin and membrane remodeling; but important questions remain regarding the spatial/temporal regulation of and interrelationship between these processes. We recently reported that the Rho-GAP, GRAF1, was particularly abundant in muscles undergoing fusion to form multinucleated fibers and that enforced expression of GRAF1 in cultured myoblasts induced robust fusion by a process that required GAP-dependent actin remodeling and BAR domain-dependent membrane sculpting. Herein we developed a novel line of GRAF1-deficient mice to explore a role for this protein in the formation/maturation of myotubes in vivo. Post-natal muscles from GRAF1-depleted mice exhibited a significant and persistent reduction in cross-sectional area, impaired regenerative capacity and a significant decrease in force production indicative of lack of efficient myoblast fusion. A significant fusion defect was recapitulated in isolated myoblasts depleted of GRAF1 or its closely related family member GRAF2. Mechanistically, we show that GRAF1 and 2 facilitate myoblast fusion, at least in part, by promoting vesicle-mediated translocation of fusogenic ferlin proteins to the plasma membrane.  相似文献   

6.
Myoblast fusion provides a fundamental, conserved mechanism for muscle fiber growth. We demonstrate here that the functional contribution of Wsp, the Drosophila homolog of the conserved actin nucleation-promoting factor (NPF) WASp, is essential for myoblast fusion during the formation of muscles of the adult fly. Disruption of Wsp function results in complete arrest of myoblast fusion in all muscles examined. Wsp activity during adult Drosophila myogenesis is specifically required for muscle cell fusion and is crucial both for the formation of new muscle fibers and for the growth of muscles derived from persistent larval templates. Although Wsp is expressed both in fibers and individual myoblasts, its activity in either one of these cell types is sufficient. SCAR, a second major Arp2/3 NPF, is also required during adult myoblast fusion. Formation of fusion-associated actin 'foci' is dependent on Arp2/3 complex function, but appears to rely on a distinct, unknown nucleator. The comprehensive nature of these requirements identifies Arp2/3-based branched actin polymerization as a universal mechanism underlying myoblast fusion.  相似文献   

7.
Cell-cell fusion is a fundamental cellular process that is essential for development as well as fertilization. Myoblast fusion to form multinucleated skeletal muscle myotubes is a well studied, yet incompletely understood example of cell-cell fusion that is essential for formation of contractile skeletal muscle tissue. Studies in this report identify several novel cytoskeletal events essential to an early phase of myoblast fusion among cultured murine myoblasts. During myoblast pairing and alignment, cortical actin filaments organize into a dense actin wall structure that parallels and extends the length of the plasma membrane of the bipolar, aligned cells. As fusion progresses, gaps appear within the actin wall at sites of vesicle accumulation, the vesicles pair across the aligned myoblasts, cell-cell contacts and fusion pores form. Inhibition of nonmuscle myosin IIA (NM-MHC-IIA) motor activity prevents formation of this cortical actin wall, as well as the appearance of vesicles at a membrane proximal location, and myoblast fusion. These results suggest that early formation of a subplasmalemmal actin wall during myoblast alignment is a critical event for myoblast fusion that supports bipolar membrane alignment and temporally regulates trafficking of vesicles to the nascent fusion sites during skeletal muscle myoblast differentiation.  相似文献   

8.
Myoblast fusion is an intricate process that is initiated by cell recognition and adhesion, and culminates in cell membrane breakdown and formation of multinucleate syncytia. In the Drosophila embryo, this process occurs asymmetrically between founder cells that pattern the musculature and fusion-competent myoblasts (FCMs) that account for the bulk of the myoblasts. The present studies clarify and amplify current models of myoblast fusion in several important ways. We demonstrate that the non-conventional guanine nucleotide exchange factor (GEF) Mbc plays a fundamental role in the FCMs, where it functions to activate Rac1, but is not required in the founder cells for fusion. Mbc, active Rac1 and F-actin foci are highly enriched in the FCMs, where they localize to the Sns:Kirre junction. Furthermore, Mbc is crucial for the integrity of the F-actin foci and the FCM cytoskeleton, presumably via its activation of Rac1 in these cells. Finally, the local asymmetric distribution of these proteins at adhesion sites is reminiscent of invasive podosomes and, consistent with this model, they are enriched at sites of membrane deformation, where the FCM protrudes into the founder cell/myotube. These data are consistent with models promoting actin polymerization as the driving force for myoblast fusion.  相似文献   

9.
Kocherlakota KS  Wu JM  McDermott J  Abmayr SM 《Genetics》2008,178(3):1371-1383
The larval body wall muscles of Drosophila melanogaster arise by fusion of founder myoblasts (FMs) and fusion-competent myoblasts (FCMs). Sticks-and-Stones (SNS) is expressed on the surface of all FCMs and mediates adhesion with FMs and developing syncytia. Intracellular components essential for myoblast fusion are then recruited to these adhesive contacts. In the studies herein, a functional analysis of the SNS cytodomain using the GAL4/UAS system identified sequences that direct myoblast fusion, presumably through recruitment of these intracellular components. An extensive series of deletion and site-directed mutations were evaluated for their ability to rescue the myoblast fusion defects of sns mutant embryos. Deletion studies revealed redundant functional domains within SNS. Surprisingly, highly conserved consensus sites for binding post-synaptic density-95/discs large/zonula occludens-1-domain-containing (PDZ) proteins and serines with a high probability of phosphorylation play no significant role in myoblast fusion. Biochemical studies establish that the SNS cytodomain is phosphorylated at multiple tyrosines and their site-directed mutagenesis compromises the ability of the corresponding transgenes to rescue myoblast fusion. Similar mutagenesis revealed a requirement for conserved proline-rich regions. This complexity and redundancy of multiple critical sequences within the SNS cytodomain suggest that it functions through a complex array of interactions that likely includes both phosphotyrosine-binding and SH3-domain-containing proteins.  相似文献   

10.
Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell–cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast–myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell–cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process.  相似文献   

11.
Myoblast fusion in the Drosophila embryos is a complex process that includes changes in cell movement, morphology and behavior over time. The advent of fluorescent proteins (FPs) has made it possible to track and image live cells, to capture the process of myoblast fusion, and to carry out quantitative analysis of myoblasts in real time. By tagging proteins with FPs, it is also possible to monitor the subcellular events that accompany the fusion process. Herein, we discuss the recent progress that has been made in imaging myoblast fusion in Drosophila, reagents that are now available, and microscopy conditions to consider. Using an Actin-FP fusion protein along with a membrane marker to outline the cells, we show the dynamic formation and breakdown of F-actin foci at sites of fusion. We also describe the methods used successfully to show that these foci are primarily if not wholly present in the fusion-competent myoblasts.  相似文献   

12.
Circular visceral muscles of Drosophila are binuclear syncytia arising from fusion of two different kinds of myoblasts: a circular visceral founder cell and one visceral fusion-competent myoblast. In contrast to fusion leading to the somatic body-wall musculature, myoblast fusion for the circular visceral muscles does not result in massive syncytia but instead in syncytia interconnected with multiple cytoplasmic bridges, which differentiate into large web-shaped muscles. Here, we show that these syncytial circular visceral muscles build a gut-enclosing network with the interwoven longitudinal visceral muscles. At the ultrastructural level, during circular visceral myoblast fusion and the first step of somatic myoblast fusion prefusion complexes and electron-dense plaques were not detectable which was surprising as these structures are characteristic for the second step of somatic myoblast fusion. Moreover, we demonstrate that Blown fuse (Blow), a cytoplasmic protein essential for the second step of somatic myoblast fusion, plays a different role in circular visceral myogenesis. Blow is known to be essential for progression beyond the prefusion complex in the somatic mesoderm; however, analysis of blow mutants established that it has a restricted role in stretching and outgrowth of the syncytia in the circular visceral muscles. Furthermore, we also found that in the visceral mesoderm, Blow is expressed in both the fusion-competent myoblasts and circular visceral founders, while expression in the somatic mesoderm is initially restricted to fusion-competent myoblasts. We also demonstrate that different enhancer elements in the first intron of blow are responsible for this distinct expression pattern. Thus, we propose a model for Blow in which this protein is involved in at least two clearly differing processes during Drosophila muscle formation, namely somatic myoblast fusion on the one hand and stretching and outgrowth of circular visceral muscles on the other.  相似文献   

13.
Skeletal muscle formation, growth and repair depend on myoblast fusion events. Therefore, in-depth understanding of the underlying molecular mechanisms controlling these events that ultimately lead to skeletal muscle formation may be fundamental for developing new therapies for tissue repair. To this end, the greatest advances in furthering understanding myoblast fusion has been made in Drosophila. Recent studies have shown that transient F-actin structures, so-called actin plugs or foci, are known to form at the site of contacting myoblasts. Indeed, actin regulators of the WASP family that control the activation of the Arp2/3 complex and thereby branched F-actin formation have been demonstrated to be crucial for myoblast fusion. Myoblast-specific cell adhesion molecules seem to be involved in the recruitment of WASP family members to the site of myoblast fusion and form a Fusion-Restricted Myogenic-Adhesive Structure (FuRMAS). Currently, the exact role of the FuRMAS is not completely understood. However, recent studies indicate that WASP-dependent F-actin regulation is required for fusion pore formation as well as for the correct integration of fusing myoblasts into the growing muscle. In this review, I discuss latest cellular studies, and recent genetic and biochemical analyses on actin regulation during myoblast fusion.  相似文献   

14.
The aggregation and fusion of myoblasts in the presence of either metabolic inhibitors or alterations in the incubation medium or under conditions which result in structural changes in the cells was studied using previously described assays for the intercellular interactions of myoblasts in suspension [Knudsen, K. A., and Horwitz, A. F. (1977). Develop. Biol.58, 328]. These perturbations inhibit myoblast fusion differently. For example, energy poisons, prior trypsin or glutaraldehyde treatment, and inhibitors of protein or cholesterol synthesis all inhibit the Ca2+-mediated myoblast aggregation. In contrast, whereas myoblasts aggregate in the presence of 20 mM Mg2+, these aggregates are dispersed, even after 1–2 hr, with EDTA or trypsin. Furthermore, enriching the fatty acyl chains in elaidate or prior incubation of the myoblasts in the presence of cytochalasin B or colchicine results in aggregates which, after 1–2 hr, are dispersed by trypsin but not by EDTA. Aggregates of unaltered, control myoblasts, on the other hand, begin to show resistance to dispersion by trypsin after these times. These observations support the suggestion that multinucleate cell formation results from a sequence of events. The influence of these perturbations on cellular aggregation also provides some initial, tentative insight into the molecular mechanism of myoblast fusion. Recognition (calcium-mediated aggregate formation) appears to be mediated by a protein(s) that is turning over during the period of fusion competence, while membrane union (formation of aggregates resistant to dispersion by trypsin) most likely involves the direct participation of membrane lipid.  相似文献   

15.
During insect myogenesis, myoblasts are organized into a pre-pattern by specialized organizer cells. In the Drosophila embryo, these cells have been termed founder cells and play important roles in specifying muscle identity and in serving as targets for myoblast fusion. A group of adult muscles, the dorsal longitudinal (flight) muscles, DLMs, is patterned by persistent larval scaffolds; the second set, the dorso-ventral muscles, DVMs is patterned by mono-nucleate founder cells (FCs) that are much larger than the surrounding myoblasts. Both types of organizer cells express Dumbfounded, which is known to regulate fusion during embryonic myogenesis. The role of DVM founder cells as well as the DLM scaffolds was tested in genetic ablation studies using the UAS/Gal4 system of targeted transgene expression. In both cases, removal of organizer cells prior to fusion, causes formation of supernumerary fibers, suggesting that cells in the myoblast pool have the capacity to initiate fiber formation, which is normally inhibited by the organizers. In addition to the large DVM FCs, some (smaller) cells in the myoblast pool also express Dumbfounded. We propose that these cells are responsible for seeding supernumerary fibers, when DVM FCs are eliminated prior to fusion. When these cells are also eliminated, myogenesis fails to occur. In the second set of studies, targeted expression of constitutively active RasV12 also resulted in the appearance of supernumerary fibers. In this case, the original DVM FCs are present, suggesting alterations in cell fate. Taken together, these data suggest that DVM myoblasts are able to respond to cues other than the original founder cell, to initiate fusion and fiber formation. Thus, the role of the large DVM founder cells is to generate the correct number of fibers, but they are not required for fiber formation itself. We also present evidence that the DVM FCs may arise from the leg imaginal disc.  相似文献   

16.
News in fusion     
Syncytial muscles arise by the fusion of mononucleated myoblasts. Main cellular events during the fusion of mammalian and Drosophila myoblasts are the recognition and adhesion of myoblasts, F‐actin polymerization, formation of the fusion pore, blending of the cytoplasm and the integration of the fusing myoblast into the growing myotube. During the last twenty years many key players of myoblast fusion have been identified in the model organism Drosophila melanogaster. However, none of these proteins showed fusogenic characteristics. During the last five years, two new proteins have been identified in mice that control membrane remodeling and that possess fusogenic properties. These proteins might in the future help to increase our knowledge about the fundamental mechanism of myoblast fusion.  相似文献   

17.
Myoblast fusion is a highly regulated process that is key for forming skeletal muscle during development and regeneration in mammals. Much remains to be understood about the molecular regulation of myoblast fusion. Some molecules that influence mammalian muscle fusion display specific cellular localization during myogenesis. Such molecules can be localized to the contact region between two fusing cells either in both cells or only in one of the cells. How distinct localization of molecules contributes to fusion is not clear. Further complexity exists as other molecules are functionally restricted to myoblasts at later stages of myogenesis to regulate their fusion with multinucleated myotubes. This review examines these three categories of molecules and discusses how spatial and functional restriction may contribute to the formation of a multinucleated cell. Understanding how and why molecules become restricted in location or function is likely to provide further insights into the mechanisms regulating mammalian muscle fusion.  相似文献   

18.
Paramyosin is a major structural protein of thick filaments in invertebrate muscles. Coiled-coil dimers of paramyosin form a paracrystalline core of these filaments, and the motor protein myosin is arranged on the core surface. To investigate the function of paramyosin in myofibril assembly and muscle contraction, we functionally disrupted the Drosophila melanogaster paramyosin gene by mobilizing a P element located in its promoter region. Homozygous paramyosin mutants die at the late embryo stage. Mutants display defects in both myoblast fusion and in myofibril assembly in embryonic body wall muscles. Mutant embryos have an abnormal body wall muscle fiber pattern arising from defects in myoblast fusion. In addition, sarcomeric units do not assemble properly and muscle contractility is impaired. We confirmed that these defects are paramyosin-specific by rescuing the homozygous paramyosin mutant to adulthood with a paramyosin transgene. Antibody analysis of normal embryos demonstrated that paramyosin accumulates as a cytoplasmic protein in early embryo development before assembling into thick filaments. We conclude that paramyosin plays an unexpected role in myoblast fusion and is important for myofibril assembly and muscle contraction.  相似文献   

19.
Myoblast fusion in Drosophila   总被引:2,自引:0,他引:2  
Somatic muscle formation is an unusual process as it requires the cells involved, the myoblasts, to relinquish their individual state and fuse with one another to form a syncitial muscle fiber. The potential use of myoblast fusion therapies to rebuild damaged muscles has generated continuing interest in elucidating the molecular basis of the fusion process. Yet, until recently, few of the molecular players involved in this process had been identified. Now, however, it has been possible to couple a detailed understanding of the cellular basis of the fusion process with powerful classical and molecular genetic strategies in the Drosophila embryo. We review the cellular studies, and the recent genetic and biochemical analyses that uncovered interacting extracellular molecules present on fusing myoblasts and the intracellular effectors that facilitate fusion. With the conservation of proteins and protein functions across species, it is likely that these findings in Drosophila will benefit understanding of the myoblast fusion process in higher organisms.  相似文献   

20.
The kinetics of myoblast fusion   总被引:2,自引:0,他引:2  
The kinetics of myoblast fusion were estimated using two complementary assays. Both utilized suspensions of fusion-competent cells, i.e. 48-52-h cultures of chick pectoral muscle grown in a low-calcium medium, thus minimizing contributions arising from cellular migration. One assay, designed to measure the onset of membrane contiguity, relies on the transfer of a lipid dye, diI-C18-[3], from labelled to unlabelled cells. The other assay, designed to estimate the kinetics of appearance of morphologically distinct multinucleate cells in suspension (myoballs), relies on enzymic dissociation of cellular aggregates followed by nuclear staining. The assays demonstrate significant membrane contiguity within 20-30 min after initiating the fusion process; however, the multinucleate myoball morphology does not appear for at least one additional hour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号