首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
Thermodynamic analysis of the lactose repressor-operator DNA interaction   总被引:4,自引:0,他引:4  
Kinetic and equilibrium constants for lactose repressor-operator DNA interaction have been examined as a function of salt concentration, size and sequence context of the operator DNA, and temperature. Significant salt effects were observed on kinetic and equilibrium parameters for pLA 322-8, an operator-containing derivative of pBR 322, and pIQ, an operator and pseudooperator-containing derivative of pBR 322. The association rate constant and equilibrium constant for the 40 base pair operator fragment were also salt dependent. Data for all the DNAs were consistent with a sliding mechanism for repressor-operator association/dissociation [Berg, O. G., & Blomberg, C. (1978) Biophys. Chem. 8, 271-280]. Calculation of the number of ionic interactions based on salt dependence yielded a value of approximately 8 for repressor binding to pIQ and pLA 322-8 vs. approximately 6 for the repressor-40 base pair fragment. These data and the differences in binding parameters for the plasmids vs. the 40 base pair operator are consistent with the formation of an intramolecular ternary complex in the plasmid DNAs. Unusual biphasic temperature dependence was observed in the equilibrium and dissociation rate constants for pLA 322-8, pIQ, and the 40 base pair fragment. These observations coupled with a discontinuity found in the inducer association rate constant as a function of temperature suggest a structural change in the protein. The large positive entropy contributions associated with repressor binding to all the DNAs examined provide the significant driving force for the reaction and are consistent with involvement of ionic and apolar interactions in complex formation.  相似文献   

2.
The dissociation of the repressor-operator complex from a series of negatively supercoiled plasmid DNAs was examined as a function of the sequence context, orientation, and spacing. The plasmids were grouped into four classes, each with common sequence context. The highest dissociation rate constants were observed for the plasmids containing only a single operator (or pseudooperator) sequence, while approximately 10-fold lower rate constants were measured for plasmids with the I gene pseudooperator in conjunction with either the Z gene pseudooperator or the primary operator. Comparison of the behavior of these two classes of plasmids demonstrated the importance of two operator sequences and supported a model of DNA loop formation to stabilize the repressor-operator complex (Whitson, P. A., and Matthews, K. S. (1986) Biochemistry 25, 3845-3852; Whitson, P. A., Olson, J. S., and Matthews, K. S. (1986) Biochemistry 25, 3852-3858; Whitson, P. A., Hsieh, W. T., Wells, R. D., and Matthews, K. S. (1987) J. Biol. Chem. 262, 4943-4946; Kr?mer, H., Niem?ller, M., Amouyal, M., Revet, B., von Wilcken-Bergmann, B., and Müller-Hill, B. (1987) EMBO J. 6, 1481-1491). The third class, with intermediate dissociation rate constants, was comprised of plasmids which contained the primary operator and the higher affinity pseudooperator normally located in the Z gene. Neither the additional presence of the I gene pseudooperator nor the orientation of the primary operator relative to the Z gene pseudooperator significantly affected the dissociation rate constants. The binding characteristics of this group of plasmids demonstrated the essential role of the Z gene pseudooperator in the formation of intramolecular ternary complex and suggested an in vivo function for this pseudooperator. Plasmids containing two primary operator sequences were the class with lowest dissociation rate constants from lac repressor, and minimal effects of salt or spacing on dissociation of this class were observed. These data are consistent with formation of an intramolecular complex with a looped DNA segment stabilized by the combination of increased local concentration of binding sites and torsional stresses on the DNA which favor binding in supercoiled DNA.  相似文献   

3.
Analysis of trp repressor-operator interaction by filter binding.   总被引:6,自引:1,他引:5       下载免费PDF全文
A filter binding assay was developed that allows measurement of specific binding of trp repressor to operator DNA. The most important feature of this procedure is the concentration and type of salt present in the binding buffer. Using this assay the dissociation constant of the repressor-operator complex was determined to be 2.6 X 10(-9) M, and 1.34 repressor dimers were found to be bound to each operator-containing DNA molecule. These values agree with those obtained by more complex methods. The dissociation constant of the repressor for the corepressor L-tryptophan in the presence of operator DNA was shown to be 2.5 X 10(-5) M. A synthetic 48 bp operator fragment was used to determine the repressor-operator dissociation constant in the presence of tryptophan or tryptophan analogs which have higher or lower affinities for aporepressor. The rate of dissociation of repressor from operator DNA also was determined. Our findings indicate that dissociation is influenced by the concentration of tryptophan or tryptophan analogs and suggest that release of the corepressor may be the first step in dissociation of the repressor-operator complex.  相似文献   

4.
Lac repressor-operator interaction: DNA length dependence   总被引:3,自引:0,他引:3  
The interaction of the E. coli lac operon repressor with its operator DNA has been directly examined as a function of the length of operator-containing DNA. The apparent bimolecular association rate constants were calculated as ka = (kd/KD), where the dissociation equilibrium constant, KD and the dissociation rate constant, kd, were measured by nitrocellulose filter adsorption assays. The values obtained for the overall association rate constants are compared with theoretical association rate curves for specific mechanisms. Association of the repressor with short operator containing DNA fragments (less than 70 base pairs) occurs at rates expected of three-dimensional diffusion. Our data also imply that at longer DNA lengths a combination of three-dimensional diffusion with one-dimensional sliding along with hopping and/or intersegment transfer must be involved to facilitate the repressor operator association.  相似文献   

5.
6.
The influence of additional operator or pseudooperator sequences on the lactose repressor-operator interaction has been investigated. Results of kinetic and equilibrium binding measurements suggest an important in vivo role for the Z-gene pseudooperator in repressor-operator binding; the formation of a ternary, looped complex is indicated by the influence of secondary operator sites on binding parameters. Although the binding affinity of the Z-gene pseudooperator [Oz] is only approximately 1/30 that observed for the primary operator [O], the binding affinity to DNA containing both Oz and O is significantly higher than either sequence alone or the sum of the two. This synergistic effect is enhanced further by replacing the pseudooperator sequence [Oz] with the primary operator sequence and results in an even stronger ternary complex in plasmids with duplicate primary sites. The distance between the center of the two primary operators affects the formation of a ternary complex in the linear DNA molecules. Decreased dissociation rate constants were observed with spacing of operator-like sequences between 300 and 500 base pairs (bp). Minimal influence of the second operator on repressor binding is observed when the operators are separated by approximately 4000 or approximately 100 bp. The significant influence of distance on kinetic and equilibrium parameters was demonstrated by measurements on plasmid pRW1511 [Oi-O-PL-Oz] cleaved with restriction enzymes either in the polylinker region to place Oi-O and Oz on opposite ends of the linear plasmid or outside this region to maintain the sites within 500 bp. These results are consistent with the formation of operator-repressor-pseudooperator ternary complex to generate a looped DNA structure.  相似文献   

7.
Binding of the Tet repressor to nonspecific and specific DNA leads to quenching of the Tet fluorescence by approximately 22% and approximately 35%, respectively. This effect is used for a direct, quantitative characterization of the binding equilibria and dynamics involved in the recognition of the operator by its repressor. From the dependence of the nonspecific binding constant on the ion concentration, it is concluded that nonspecific binding is almost completely driven by the entropy change resulting from the release of three to four Na+ ions from the double helix upon protein binding. Formation of the specific complex is driven by a higher entropy term resulting from the release of seven to eight Na+ ions and in addition by a free energy term of -33 kJ/mol from nonelectrostatic interactions, which are attributed to the specific contacts. The dynamics of the repressor-operator recognition are resolved by stopped-flow measurements at various salt concentrations and for different DNA chain lengths into two separate steps. The first step follows a second-order mechanism and results in an intermediate complex associated with formation of about three to four electrostatic contacts between protein and DNA; apparently, this complex is equivalent to the nonspecific complex. The existence of an intermediate is also indicated by experiments in mixed Na+-Mg2+ buffers, which can be described with high accuracy by competition of Mg2+ and protein. The intermediate complex is formed at a rate of 3 X 10(8) M-1 s-1 and is converted in the second reaction step to the specific complex with a rate constant of 6 X 10(4) s-1, which is almost independent of the salt concentration. Our interpretation and the parameters obtained from our model are confirmed by competition of nonspecific DNA with operator DNA for repressor binding. The observed maximal rate constant of 3 X 10(8) M-1 s-1 is very close to theoretical predictions for the association without a sliding mechanism. The very small dependence of the observed rate constants on the chain length shows that the Tet repressor is not able to slide over any substantial distance even at low salt concentrations. The question of a potential contribution from sliding under our experimental conditions is critically discussed. The absence of sliding in the case of the Tet repressor under physiological conditions is compared with the high sliding efficiency of the lac repressor and is discussed with respect to possible molecular mechanisms of sliding in relation to biological function.  相似文献   

8.
Kinetics and mechanism in the reaction of gene regulatory proteins with DNA   总被引:28,自引:0,他引:28  
We have measured the kinetic properties of the Escherichia coli cAMP receptor protein (CAP) and lac repressor interacting with lac promoter restriction fragments. Under our reaction conditions (10 mM-Tris X HCl (pH 8.0 at 21 degrees C), 1 mM-EDTA, 10 microM-cAMP, 50 micrograms bovine serum albumin/ml, 5% glycerol), the association of CAP is at least a two-step process, with an initial, unstable complex formed with rate constant kappa a = 5(+/- 2.5) X 10(7) M-1 s-1. Subsequent formation of a stable complex occurs with an apparent bimolecular rate constant kappa a = 6.7 X 10(6) M-1 s-1. At low total DNA concentration, the dissociation rate constant for the specific CAP-DNA complex is 1.2 X 10(-4) s-1. The ratio of formation and dissociation rate constants yields an estimate of the equilibrium constant, Keq = 5 X 10(10) M-1, in good agreement with static results. We observed that the dissociation rate constant of both CAP-DNA and repressor-DNA complexes is increased by adding non-specific "catalytic" DNA to the reaction mixture. CAP dissociation by the concentration-dependent pathway is second-order in added non-specific DNA, consistent with either the simultaneous or the sequential participation of two DNA molecules in the reaction mechanism. The results imply a role for distal DNA in assembly-disassembly of specific CAP-DNA complexes, and are consistent with a model in which the subunits in the CAP dimer separate in the assembly-disassembly process. The dissociation of lac repressor-operator complexes was found to be DNA concentration-dependent as well, although in contrast to CAP, the reaction is first-order in catalytic DNA. Added excess operator-rich DNA gave more rapid dissociation than equivalent concentrations of non-specific DNA, indicating that the sequence content of the competing DNA influences the rate of repressor dissociation. The simplest interpretation of these observations is that lac repressor can be transferred directly from one DNA molecule to another. A comparison of the translocation rates calculated for direct transfer with those predicted by the one-dimensional sliding model indicates that direct transfer may play a role in the binding site search of lac repressor.  相似文献   

9.
Site-specific DNA-affinity chromatography of the lac repressor.   总被引:4,自引:1,他引:3       下载免费PDF全文
To test the feasibility of site-specific DNA-affinity chromatography, E. coli lac repressor was bound to an operator-containing DNA column, and in parallel to a non-operator DNA column. Salt gradient elution shows: 1) elution from non-operator DNA was near 250mM KCl or NaCl; interpretation of this result suggests the usefulness of the procedure for studying salt-dependence of DNA-protein affinities; 2) elution from operator-containing DNA was delayed (average elution = 1000mM salt), demonstrating a feasibility of site-specific DNA-affinity chromatography, if one provides a sufficiently favorable ratio of specific to non-specific DNA binding sites; 3) repressor eluted from operator-containing DNA over a very broad salt range, which may represent chromatography-generated repressor heterogeneity.  相似文献   

10.
Kinetic studies on Cro repressor-operator DNA interaction   总被引:14,自引:0,他引:14  
The six operators of phage lambda and their consensus sequence were synthesized as 21 base-pair DNAs and their interactions with Cro repressor were studied using a filter binding assay. The measured equilibrium dissociation constants suggest that Cro has the highest affinity to the consensus operator (KD = 1.2 X 10(-12) M) and then the OR3 operator (KD = 2.0 X 10(-12) M), after that the affinity becomes lower in the following order: OR1, OL1, OL2, OL3, OR2. The competition experiments show that Cro forms the most stable complex with the consensus operator (t1/2 = 150 min), which is followed by the complex with OR3 (t1/2 = 70 min), OR1, OL1, OL2, OL3 and OR2. The association rate constants (ka) were also measured. They are approximately the same (2 X 10(8) to 4 X 10(8) m-1 s-1) for the consensus, OR3, OR2 and OR1 operators. These experiments have thus shown that the sequence difference in the operator affects the dissociation (KD and kd) but not the association (ka) process. The operators' binding strengths relative to OR1 are 14 (for consensus operator), 7.6 (OR3), 0.73 (OL1), 0.42 (OL2), 0.16 (OL3) and 0.1 (OR2). Seven different lengths of OR-containing DNA fragments were prepared. Measurement of kinetic parameters shows that the affinity of Cro to operator DNA (measured by KD) is essentially constant and independent of the DNA length, while the association and dissociation rate constants increase as the DNA length increases. This is consistent with the idea that Cro locates and leaves its operator via a two-step mechanism. It appears that Cro binds first at an arbitrary site on DNA, then is transferred to its operator site by a facilitated mechanism. The process is reversed when Cro dissociates from the operator. Most of our data fit to the theoretical expression formulated by Berg, Winter & von Hippel for the sliding mechanism. We conclude that Cro slides along the DNA to locate and leave the operator.  相似文献   

11.
Binding of E.coli lac repressor to non-operator DNA*   总被引:4,自引:2,他引:2       下载免费PDF全文
It is shown by melting profile analysis of lac repressor-DNA complexes that repressor binds tightly and preferentially (relative to single-stranded DNA) to double-stranded non-operator DNA. This binding stabilizes the DNA against melting and the repressor against thermal denaturation. Analysis of the extent of stabilization and the rate of dissociation of repressor from non-operator DNA as a function of sodium ion concentration shows, in confirmation of other studies,(3,4) that the binding constant (K(RD)) is very ionic strength dependent; K(RD) increases from approximately 10(6) M(-1) at approximately 0.1 M Na(+) to values in excess of 10(10) M(-1) at 0.002 M Na(+). Repressor bound to non-operator DNA is not further stabilized against thermal denaturation by inducer binding, indicating that the inducer and DNA binding sites probably represent separately stabilized local conformations. Transfer melting experiments are used to measure the rate of dissociation of repressor from operator DNA. These experiments show that most of the ionic strength dependence of the binding constant is in the dissociation process; the estimated dissociation rate constant decreases from greater than 10(-1) sec(-1) at [Na(+)] >/= 0.02 M to less than 10(-4) sec(-1) at [Na(+)] 相似文献   

12.
The core protein produced by mild proteolytic digestion of lactose repressor protein has been purified from native repressor by chromatography on phosphocellulose. The core protein isolated in this manner binds to operator DNA with an apparent dissociation constant of 10(-7) M, and the observed binding is decreased by the presence of inducer. Competition studies with nonspecific DNA indicate that the binding species in the core protein preparations is neither intact lactose repressor nor mixed tetramers containing varying numbers of intact NH2-terminal regions. This conclusion is supported by experiments designed to measure the rate of dissociation of the core protein from the operator DNA. Calculations based on the assumption that the isolated core protein binds similarly to the corresponding region in intact repressor protein indicate that the core region contributes approximately 40 to 50% of the energy of binding to operator DNA. Furthermore, the change in operator affinity upon inducer binding to core accounts for a minimum of 60% of the free energy change in binding to operator observed for the native protein. The demonstration that core protein binds to operator DNA requires a re-evaluation of the various models for repressor binding to DNA. A possible model based on the available information is presented.  相似文献   

13.
The affinity of synthetic P22 operators for P22 repressor varies with the base sequence at the operator's center. At 100 mM KCl, the affinity of these operators for P22 repressor varies over a 10-fold range. Dimethylsulfate protection experiments indicate that the central bases of the P22 operator are not contacted by the repressor. The KD for the complex of P22 repressor with an operator bearing central T-A bases (9T) increases less than 2-fold between 50 and 200 mM KCl, whereas the KD for the complex of repressor with an operator bearing central C-G bases (9C) increases 10-fold in the same salt range. The DNase I cleavage patterns of both bound and unbound P22 operators also vary with central base sequence. The DNase I pattern of the repressor-9C operator complex changes markedly with salt concentration, whereas that of the 9T operator-repressor complex does not. These changes in nuclease digestion pattern thereby mirror the salt-dependent changes in the P22 operator's affinity for repressor. P22 repressor protects the central base pair of the 9T operator from cleavage by the intercalative cleavage reagent Cu(I)-phenanthroline, while repressor does not protect the central bases of the 9C operator. Together these data indicate that central base pairs affect P22 operator strength by altering the structure of the unbound operator and the repressor-operator complex.  相似文献   

14.
T J Daly  J S Olson  K S Matthews 《Biochemistry》1986,25(19):5468-5474
The lactose repressor protein has been modified with three sulfhydryl-specific reagents which form mixed disulfide adducts. Methyl methanethiosulfonate (MMTS) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) completely reacted with all three cysteine residues, whereas only partial reaction was observed with didansylcystine. Cysteines-107 and -140 reacted stoichiometrically with MMTS and DTNB, while Cys-281 was modified only at higher molar ratios. Didansylcystine reacted primarily with cysteines-107 and -140. Affinity of MMTS-modified repressor for 40 base pair operator DNA was decreased 30-fold compared to unmodified repressor, and this decrease correlated with modification of cysteine-281. DTNB-modified repressor bound operator DNA with a 50-fold weaker affinity than unmodified repressor. Modification of the lac repressor with didanylcystine decreased operator binding only 4-fold, and nonspecific DNA binding increased 3-fold compared to unmodified repressor. No change in the inducer equilibrium binding constant was observed following modification with any of these reagents. In contrast, inducer association and dissociation rate constants were decreased approximately 50-fold for repressor completely modified with MMTS or DTNB, while didansylcystine had minimal effect on inducer binding kinetics. Correlation between modification of Cys-281 and the observed decrease in rate constants indicates that this region of the protein regulates the accessibility of the sugar binding site. The parallel between the increase in the Kd for repressor binding to operator, the altered rate constant for inducer binding, and modification of cysteine-281 suggests that this region of the protein is crucially involved in the function of the repressor protein.  相似文献   

15.
Kinetic mechanism of the EcoRI DNA methyltransferase   总被引:4,自引:0,他引:4  
N O Reich  N Mashhoon 《Biochemistry》1991,30(11):2933-2939
We present a kinetic analysis of the EcoRI DNA N6-adenosine methyltransferase (Mtase). The enzyme catalyzes the S-adenosylmethionine (AdoMet)-dependent methylation of a short, synthetic 14 base pair DNA substrate and plasmid pBR322 DNA substrate with kcat/Km values of 0.51 X 10(8) and 4.1 X 10(8) s-1 M-1, respectively. The Mtase is thus one of the most efficient biocatalysts known. Our data are consistent with an ordered bi-bi steady-state mechanism in which AdoMet binds first, followed by DNA addition. One of the reaction products, S-adenosylhomocysteine (AdoHcy), is an uncompetitive inhibitor with respect to DNA and a competitive inhibitor with respect to AdoMet. Thus, initial DNA binding followed by AdoHcy binding leads to formation of a ternary dead-end complex (Mtase-DNA-AdoHcy). We suggest that the product inhibition patterns and apparent order of substrate binding can be reconciled by a mechanism in which the Mtase binds AdoMet and noncanonical DNA randomly but that recognition of the canonical site requires AdoMet to be bound. Pre-steady-state and isotope partition analyses starting with the binary Mtase-AdoMet complex confirm its catalytic competence. Moreover, the methyl transfer step is at least 10 times faster than catalytic turnover.  相似文献   

16.
The osmotic stress technique was used to measure changes in macromolecular hydration that accompany binding of wild-type Escherichia coli lactose (lac) repressor to its regulatory site (operator O1) in the lac promoter and its transfer from site O1 to nonspecific DNA. Binding at O1 is accompanied by the net release of 260 +/- 32 water molecules. If all are released from macromolecular surfaces, this result is consistent with a net reduction of solvent-accessible surface area of 2370 +/- 550 A. This area is only slightly smaller than the macromolecular interface calculated for a crystalline repressor dimer-O1 complex but is significantly smaller than that for the corresponding complex with the symmetrical optimized O(sym) operator. The transfer of repressor from site O1 to nonspecific DNA is accompanied by the net uptake of 93 +/- 10 water molecules. Together these results imply that formation of a nonspecific complex is accompanied by the net release of 165 +/- 43 water molecules. The enhanced stabilities of repressor-DNA complexes with increasing osmolality may contribute to the ability of Escherichia coli cells to tolerate dehydration and/or high external salt concentrations.  相似文献   

17.
Arc repressor is tetrameric when bound to operator DNA   总被引:10,自引:0,他引:10  
B M Brown  J U Bowie  R T Sauer 《Biochemistry》1990,29(51):11189-11195
The Arc repressor of bacteriophage P22 is a member of a family of DNA-binding proteins that use N-terminal residues in a beta-sheet conformation for operator recognition. Here, Arc is shown to bind to its operator site as a tetramer. When mixtures of Arc (53 residues) and an active variant of Arc (78 residues) are used in gel retardation experiments, five discrete protein-DNA complexes are observed. This result is as expected for operators bearing heterotetramers containing 4:0, 3:1, 2:2, 1:3, and 0:4 ratios of the two proteins. Direct measurements of binding stoichiometry support the conclusion that Arc binds to a single 21-base-pair operator site as a tetramer. The Arc-operator binding reaction is highly cooperative (Hill constant = 3.5) and involves at least two coupled equilibria. In the first reaction, two unfolded monomers interact to form a folded dimer (Bowie & Sauer, 1989a). Rapid dilution experiments indicate that the Arc dimer is the kinetically significant DNA-binding species and allow an estimate of the equilibrium dissociation constant for dimerization [K1 = 5 (+/- 3) x 10(-9) M]. The rate of association of Arc-operator complexes shows the expected second-order dependence on the concentration of free Arc dimers, with k2 = 2.8 (+/- 0.7) x 10(18) M-2 s-1. The dissociation of Arc-operator complexes is a first-order process with k-2 = 1.6 (+/- 0.6) x 10(-4) s-1. The ratio of these kinetic constants [K2 = 5.7 (+/- 2.3) x 10(-23) M2] provides an estimate for the equilibrium constant for dissociation of the DNA-bound tetramer to two free Arc dimers and the operator. An independent determination of this complex equilibrium constant [K2 = 7.8 (+/- 4.8) x 10(-23) M2] was obtained from equilibrium binding experiments.  相似文献   

18.
Mnt repressor is indirectly responsible for the maintenance of lysogeny of the phage P22. This repressor interacts with a 21-base pair operator DNA constituting within it a 17-base pair perfect 2-fold symmetric sequence whose bases make a direct contact with the protein. We have synthesized six 37-base pair DNAs consisting of 21 base pair natural operator and its modifications in which certain symmetrically situated GC base pairs were replaced systematically with ATs to understand their importance. The binding interaction studies of Mnt repressor to such natural and modified operator DNAs reported here indicate that the GCs close to the center of symmetry make major contacts with the protein whereas, GCs nearer to the periphery form weak contacts. Methylation protection experiments indicated that when the GCs near the center of symmetry were replaced with AT, the central GC became more accessible for dimethyl sulfate methylation with possible conformational change in DNA. The circular dichroism studies indicated that upon repressor binding conformational changes in DNA takes place with a possible increase in helicity of the repressor protein.  相似文献   

19.
Allan BW  Reich NO  Beechem JM 《Biochemistry》1999,38(17):5308-5314
The absolute temporal couplings between DNA binding and base flipping were examined for the EcoRI DNA methyltransferase. The binding event (monitored using rhodamine-x fluorescence anisotropy) was monophasic with a second-order on-rate of 1.1 x 10(7) M-1 s-1 相似文献   

20.
Phalloidin enhances actin assembly by preventing monomer dissociation   总被引:20,自引:11,他引:9       下载免费PDF全文
Incubation of the isolated acrosomal bundles of Limulus sperm with skeletal muscle actin results in assembly of actin onto both ends of the bundles. These cross-linked bundles of actin filaments taper, thus allowing one to distinguish directly the preferred end for actin assembly from the nonpreferred end; the preferred end is thinner. Incubation with actin in the presence of equimolar phalloidin in 100 mM KCl, 1 mM MgCl2 and 0.5 mM ATP at pH 7.5 resulted in a slightly smaller association rate constant at the preferred end than in the absence of the drug (3.36 +/- 0.14 X 10(6) M-1 s-1 vs. 2.63 +/- 0.22 X 10(6) M-1 s- 1, control vs. experimental). In the presence of phalloidin, the dissociation rate constant at the preferred end was reduced from 0.317 +/- 0.097 s-1 to essentially zero. Consequently, the critical concentration at the preferred end dropped from 0.10 microM to zero in the presence of the drug. There was no detectable change in the rate constant of association at the nonpreferred end in the presence of phalloidin (0.256 +/- 0.015 X 10(6) M-1 s-1 vs. 0.256 +/- 0.043 X 10(6) M-1 s-1, control vs. experimental); however, the dissociation rate constant was reduced from 0.269 +/- 0.043 s-1 to essentially zero. Thus, the critical concentration at the nonpreferred end changed from 1.02 microM to zero in the presence of phalloidin. Dilution-induced depolymerization at both the preferred and nonpreferred ends was prevented in the presence of phalloidin. Thus, phalloidin enhances actin assembly by lowering the critical concentration at both ends of actin filaments, a consequence of reducing the dissociation rate constants at each end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号