首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied entrainment of the catalytic cycle of the Na/K pumps by an imposed external AC electric field. Our results show that a well designed dichotomous oscillating electric field with a frequency close to the pumps’ natural turnover rate can synchronize the pump molecules. Characteristics of the synchronized pumps include: (1) outward pump currents responding to Na-extrusion and inward pump currents responding to K-pumping in are separated; (2) magnitude of the outward pump currents can be up to three times higher than that of the randomly paced pump currents; (3) magnitude ratio of the outward over inward pump currents reveals the 3:2 stoichiometry of the pumps. We, further, gradually increased the field oscillating frequency in a stepwise pattern and kept pump synchronization in each step. We found that the pumps’ turnover rate could be modulated up as the field frequency increased. Consequently, the pump currents significantly increased by many fold. In summary, these results show that the catalytic cycle of Na/K pumps can be synchronized and modulated by a well designed oscillating electric field resulting in activation of the pump functions.  相似文献   

2.
The behavior of Na/K pump currents when exposed to an oscillating electric field is studied by computer simulation. The pump current from a single pump molecule was sketched based on previous experimental results. The oscillating electric field is designed as a symmetric, dichotomous waveform varying the membrane potential from −30 to −150 mV around the membrane resting potential of −90 mV. Based on experimental results from skeletal muscle fibers, the energy needed to overcome the electrochemical potentials for the Na and K-transports are calculated in response to the field’s two half-cycles. We found that a specially designed oscillating electric field can eventually synchronize the pump molecules so that all the individual pumps run at the same pumping rate and phase as the field oscillation. They extrude Na ions during the positive half-cycle and pump in K ions during the negative half-cycle. The field can force the two ion-transports into the corresponding half-cycles, respectively, but cannot determine their detailed positions. In other words, the oscillating electric field can synchronize pumps in terms of their pumping loops but not at a specific step in the loop. These results are consistent with our experimental results in measurement of the pump currents.  相似文献   

3.
Experiments are reviewed here in which Na/K pump current was determined as strophanthidin-sensitive current in guinea-pig ventricular myocytes, voltage-clamped and internally-dialyzed via wide-tipped pipettes. In the presence of 150 mM extracellular [Na], both outward and inward pump current, during forward and reverse Na/K exchange respectively, were strongly voltage dependent. But reduction of external [Na] to 1.5 mM severely attenuated the voltage sensitivity of outward Na/K pump current. Voltage jumps elicited large transient pump currents during forward or reverse Na/K exchange, or when pump activity was restricted to Na translocation steps, but not when pumps were presumably engaged in K/K exchange. These findings indicate that Na translocation, but not K translocation, involves net charge movement through the membrane field, and that both forward and reverse Na/K transport cycles are rate-limited not by that voltage-sensitive step but by a subsequent voltage-insensitive step.  相似文献   

4.
Rhodopsins are one of the most studied photoreceptor protein families, and ion‐translocating rhodopsins, both pumps and channels, have recently attracted broad attention because of the development of optogenetics. Recently, a new functional class of ion‐pumping rhodopsins, an outward Na+ pump, was discovered, and following structural and functional studies enable us to compare three functionally different ion‐pumping rhodopsins: outward proton pump, inward Cl? pump, and outward Na+ pump. Here, we review the current knowledge on structure‐function relationships in these three light‐driven pumps, mainly focusing on Na+ pumps. A structural and functional comparison reveals both unique and conserved features of these ion pumps, and enhances our understanding about how the structurally similar microbial rhodopsins acquired such diverse functions. We also discuss some unresolved questions and future perspectives in research of ion‐pumping rhodopsins, including optogenetics application and engineering of novel rhodopsins.
  相似文献   

5.
It has been previously demonstrated by our group that our specifically designed synchronization modulation electric field can dynamically entrain the Na/K ATPase molecules, effectively accelerating the pumping action of these molecules. The ATPase molecules are first synchronized by the field, and subsequently their pumping rates are gradually modulated in a stepwise pattern to progressively higher and higher levels. Here, we present results obtained on application of the field to intact twitch skeletal muscle fibers. The ionic concentration gradient across the cell membrane was monitored, with the membrane potential extrapolated using a slow fluorescent probe with a confocal microimaging technique. The applied synchronization-modulation electric field is able to slowly but consistently increase the ionic concentration gradient across the membrane and, hence, hyperpolarize the membrane potential. All of these results were fully eliminated if ouabain was applied to the bathing solution, indicating a correlation with the action of the Na/K pump molecules. These results in combination with our previous results into the entrainment of the pump molecules show that the synchronization-modulation electric field-induced activation of the Na/K pump functions can effectively increase the ionic concentration gradient and the membrane potential.  相似文献   

6.
In previously reported work, we developed a new technique, synchronization modulation, to electrically activate Na/K pump molecules. The fundamental mechanism involved in this technique is a dynamic entrainment procedure of the pump molecules, carried out in a stepwise pattern. The entrainment procedure consists of two steps: synchronization and modulation. We theoretically predicted that the pump functions can be activated exponentially as a function of the membrane potential. We have experimentally demonstrated synchronization of the Na/K pump molecules and acceleration of their pumping rates by many fold through use of voltage-clamp techniques, directly monitoring the pump currents. We further applied this technique to intact skeletal muscle fibers from amphibians and found significant effects on the membrane resting potential. Here, we extend our study to intact mammalian cardiomyocytes. We employed a noninvasive confocal microscopic fluorescent imaging technique to monitor electric field–induced changes in ionic concentration gradient and membrane resting potential. Our results further confirm that the well-designed synchronization modulation electric field can effectively accelerate the Na/K pumping rate, increasing the ionic concentration gradient across the cell membrane and hyperpolarizing the membrane resting potential.  相似文献   

7.
Blood vessel dilation starts from activation of the Na/K pumps and inward rectifier K channels in the vessel smooth muscle cells, which hyperpolarizes the cell membrane potential and closes the Ca channels. As a result, the intracellular Ca concentration reduces, and the smooth muscle cells relax and the blood vessel dilates. Activation of the Na/K pumps and the membrane potential hyperpolarization plays a critical role in blood vessel functions. Previously, we developed a new technique, synchronization modulation, to control the pump functions by electrically entraining the pump molecules. We have applied the synchronization modulation electric field noninvasively to various intact cells and demonstrated the field-induced membrane potential hyperpolarization. We further applied the electric field to blood vessels and investigated the field induced functional changes of the vessels. In this paper, we report the results in a study of the membrane potential change in the smooth muscle cells of mesenteric blood vessels in response to the oscillating electric field. We found that the synchronization modulation electric field can effectively hyperpolarize the muscle membrane potential quickly in seconds under physiological conditions.  相似文献   

8.
The purpose of this study was to investigate the actions of estradiol on spontaneous and evoked action potentials in the isolated longitudinal smooth muscle cells of the pregnant rat. Single cells were obtained by enzymatic digestion from pregnant rat longitudinal myometrium. Action potentials and currents were recorded by whole-cell current-clamp and voltage-clamp methods, respectively. The acute effects of 17beta-estradiol on action potentials and inward and outward currents were investigated. The following results were obtained. The average resting membrane potential of single myometrial cells was -54 mV (n = 40). In many cells, an electrical stimulation evoked a membrane depolarization, and action potentials were superimposed on the depolarization. In some cells, spontaneous action potentials were observed. Estradiol (30 microM) slightly depolarized the membrane (ca. 5 mV) and attenuated the generation of action potentials by reducing the frequency and amplitude of the spikes. Afterhyperpolarization was also attenuated by estradiol (30 microM). On the other hand, in 5 of 35 cells, estradiol increased the first spike amplitude and action potential duration, while frequency of the spike generation and afterhyperpolarization were inhibited. In voltage-clamped muscle cells, estradiol inhibited both inward and outward currents. Acute inhibition or augmentation of spike generation by estradiol is due to the balance of inhibition of inward and outward currents. Inhibition of both currents also prevented afterhyperpolarization, causing potential-dependent block of Ca spikes.  相似文献   

9.
Properties of "creep currents" in single frog atrial cells   总被引:1,自引:5,他引:1  
Changes in membrane current in response to an elevation of [Na]i were studied in enzymatically dispersed frog atrial cells. Na loading by either intracellular dialysis or exposure to the Na ionophore monensin produces changes in membrane current that resemble the "creep currents" originally observed in cardiac Purkinje fibers during exposure to low-K solutions. Na loading induces a transient outward current during depolarizing voltage-clamp pulses, followed by an inward current in response to repolarization back to the holding potential. In contrast to cardiac Purkinje fibers, Na loading of frog atrial cells induces creep currents without accompanying transient inward currents. Creep currents induced by Na loading are insensitive to K channel antagonists like Cs and 4-aminopyridine; they are not influenced by doses of Ca channel antagonists that abolish iCa, but are sensitive to changes in [Ca]o or [Na]o. A comparison of the time course of development of inward creep currents are not tail currents associated with iCa. Inward creep currents can also be induced by experimental interventions that increase the iCa amplitude. Exposure to isoproterenol enhances the iCa amplitude and induces inward creep currents; both can be attenuated by Ca channel antagonists. Both inward and outward creep currents are blocked by low doses of La, independently of La's ability to block iCa. It is concluded that (a) creep currents are not mediated by voltage-gated Na, Ca, or K channels or by an electrogenic Na,K pump; (b) inward creep currents induced either by Na loading or in response to an increase in the amplitude of iCa are triggered by an elevation of [Ca]i; and (c) creep currents may be generated by either an electrogenic Na/Ca exchange mechanism or by a nonselective cation channel activated by [Ca]i.  相似文献   

10.
Synchronization of Na/K pump molecules by a train of squared pulses   总被引:1,自引:1,他引:0  
We experimentally studied the Na/K pump currents evoked by a train of squared pulses whose pulse-duration is about the time course of Na-extrusion at physiological conditions. The magnitude of the measured pump current can be as much as three-fold of that induced by the traditional single pulse measurement. The increase in the pump current is directly dependent on the number of pre-pulses. The larger the number of the pre-pulses is, the higher the current magnitude can be obtained. At a particular number of pre-pulses, the pump current becomes saturated. These results suggest that a large number of pre-pulses may synchronize the pump molecules to work at the same pace. As a result, the pump molecules may extrude Na ions at the same time corresponding to the stimulation pulses, and pump in K ions at the same time during the pulse intervals. Therefore, the measured pump current is three-fold of that measured by a single pulse where the outward and inward pump currents are canceled each other.  相似文献   

11.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

12.
用双微电极电压钳技术在巨孔匙(虫戚)(Megathura)未受精卵细胞膜上记录到多种离子流。主要有一种内向的两价离子流和几种钾离子流:包括钡离子激活的钾离子流,迅速激活又迅速失活的钾离子流(类似于I_A)和异常整流钾离子流。不同细胞的离子流大小不同。在一些卵可能会缺少其中某一种离子流。此外,还观察到浴槽溶液中氯和钠离子浓度改变对膜电位及膜电导的影响。  相似文献   

13.
Summary Membrane ionic currents were measured in pregnant rat uterine smooth muscle under voltage clamp conditions by utilizing the double sucrose gap method, and the effects of conditioning pre-pulses on these currents were investigated. With depolarizing pulses, the early inward current was followed by a late outward current. Cobalt (1mm) abolished the inward current and did not affect the late outward currentper se, but produced changes in the current pattern, suggesting that the inward current overlaps with the initial part of the late outward current. After correction for this overlap, the inward current reached its maximum at about +10 mV and its reversal potential was estimated to be +62 mV. Tetraethylammonium (TEA) suppressed the outward currents and increased the apparent inward current. The increase in the inward current by TEA thus could be due to a suppression of the outward current. The reversal potential for the outward current was estimated to be –87 mV. Conditioning depolarization and hyperpolarization both produced a decrease in the inward current. Complete depolarization block occurred at a membrane potential of –20 mV. Conditioning hyperpolarization experiments in the presence of cobalt and/or TEA revealed that the decrease in the inward current caused by conditioning hyperpolarization was a result of an increase in the outward current overlapping with the inward current. It appears that a part of the potassium channel population is inactivated at the resting membrane potential and that this inactivation is removed by hyperpolarization.  相似文献   

14.
Using the whole-cell voltage clamp (to determine the membrane current) and current clamp (to determine membrane potential) methods in conjunction with the nystatin-perforation technique, we studied the effect of methacholine (MCh) and other secretagogues on whole cell K and Cl currents in dissociated rhesus palm eccrine sweat clear cells. Application of MCh by local superfusion induced a net outward current (at a holding potential of ?60 mV and a clamp voltage of 0 mV), and a transient hyperpolarization by 5.6 mV, suggesting the stimulation of K currents. The net outward current gradually changed to the inward (presumably Cl) currents over the next 1 to 2 min of continuous MCh stimulation. During this time the membrane potential also changed from hyperpolarization to depolarization. The inward currents were increasingly more activated than outward (presumably K) currents during repeated MCh stimulations so that a net inward current (at ?60 mV) was observed after the fourth or fifth MCh stimulation. Ionomycin (10 μm) also activated both inward and outward current. The observed effect of MCh was abolished by reducing extracellular [Ca] to below 1 nm (Ca-free + 1 mm EGTA in the bath). MCh-activated outward currents were inhibited by 5 mm Ba and by 0.1 mm quinidine, although these agents also suppressed the inward currents. Bi-ionic potential measurements indicated that the contribution of Na to the membrane potential was negligible both before and after MCh or ISO (isoproterenol) stimulations and that the observed membrane current was carried mainly by K and Cl. MCh increased the bi-ionic potential by step changes in external K and Cl concentrations, further supporting that MCh-induced outward and inward currents represent K and Cl currents, respectively. Stimulation with ISO or FK (forskolin) resulted in a depolarization by about 55 mV and a net inward (most likely Cl) current independent of external Ca. CT-cAMP mimicked the effects of FK and ISO. The bi-ionic potential, produced by step changes in the external Cl concentration, increased during ISO stimulation, whereas that of K decreased. This indicates that the ISO-induced inward current is due to Cl current and that K currents were unchanged or slightly decreased during stimulation with ISO or 10 μm FK. Both myoepithelial and dark cells responded only to MCh (but not to FK) with a marked depolarization of the membrane potential due to activation of Cl, but not K, currents. We conclude that MCh stimulates Ca-dependent K and Cl currents, whereas ISO stimulates cAMP-dependent Cl currents in eccrine clear cells.  相似文献   

15.
The objective of these experiments was to test the hypothesis that the "creep currents" induced by Na loading of single frog atrial cells (Hume, J. R., and A. Uehara. 1986. Journal of General Physiology. 87:833) may be generated by an electrogenic Na/Ca exchanger. Creep currents induced by Na loading were examined over a wide range of membrane potentials. During depolarizing voltage-clamp pulses, outward creep currents were observed, followed by inward creep currents upon the return to the holding potential. During hyperpolarizing voltage-clamp pulses, creep currents of the opposite polarity were observed: inward creep currents were observed during the pulses, followed by outward creep currents upon the return to the holding potential. The current-voltage relations for inward and outward creep currents in response to depolarizing or hyperpolarizing voltage displacements away from the holding potential all intersect the voltage axis at a common potential, which indicates that inward and outward creep currents may have a common reversal potential under equilibrium conditions and may therefore be generated by a common mechanism. Measurements of inward creep currents confirm that voltage displacements away from the holding potential rapidly alter equilibrium conditions. Current-voltage relationships of inward creep currents after depolarizing voltage-clamp pulses are extremely labile and depend critically upon the amplitude and duration of outward creep currents elicited during preceding voltage-clamp pulses. An optical monitor of mechanical activity in single cells revealed (a) a similar voltage dependence for the outward creep currents induced by Na loading and tonic contraction, and (b) a close correlation between the time course of the decay of the inward creep current and the time course of mechanical relaxation. A mathematical model of electrogenic Na/Ca exchange (Mullins, L.J. 1979. Federation Proceedings. 35:2583; Noble, D. 1986. Cardiac Muscle. 171-200) can adequately account for many of the properties of creep currents. It is concluded that creep currents in single frog atrial cells may be attributed to the operation of an electrogenic Na/Ca exchange mechanism.  相似文献   

16.
Effects of procaine, trimecaine, and a new carbanilate local anesthetic, carbizocaine, on early sodium inward current and fast and slow components of potassium outward current in the membrane of the rat dorsal root ganglion neuron were studied using the internal dialysis and potential clamp techniques. All the currents studied were depressed in the presence of the drugs tested. However, for inhibition of the inward current concentrations lower by approximately one to more than two orders were sufficient compared to those required for similar inhibition of the outward currents. Carbizocaine was the most effective, procaine the least effective drug. Almost identical ratios of the negative logarithms of mean effective concentrations for blocking the inward and the outward current respectively, were found for each of the drugs tested. None of the drugs could be characterized as a specific blocker of sodium or potassium channels. It is concluded that the mechanisms of action of these three local anesthetics in all the three types of ion channels studied in the neuronal membrane are very similar regardless of both the type of the chemical bond in the intermediary chain of the molecules (ester, anilide, carbanilate) and the structure of the aromatic moiety, or the absolute potency of the drug.  相似文献   

17.
Transmembrane ionic currents were investigated in the rabbit pulmonary artery smooth muscle under voltage clamp conditions with the use of the double sucrose gap method. With depolarizing pulses, there developed a fast inactivated outward current that was followed by a steady-state outward current. Tetraethylammonium (TEA) partly suppressed the outward current, and the fast inward current that preceded the fast outward one could be seen in these conditions. Appearance of the fast inward current in TEA-containing solution suggests the overlapping of the fast inward and outward currents. It appears that the resultant transmembrane current has an outward direction since in normal conditions the permeability of the fast potassium channels exceeds that of calcium channels. Conditioning hyperpolarization increased and depolarization decreased the fast outward current indicating that at the resting membrane potential a part of the potassium channels is inactivated and this inactivation is removed by hyperpolarization.  相似文献   

18.
The role of Na-Ca exchange in the membrane potential changes caused by repetitive activity ("drive") was studied in guinea pig single ventricular myocytes exposed to different [Ca2+]o. The following results were obtained. (i) In 5.4 mM [Ca2+]o, the action potentials (APs) gradually shortened during drive, and the outward current during a train of depolarizing voltage clamp steps gradually increased. (ii) The APs shortened more and were followed by a decaying voltage tail during drive in the presence of 5 mM caffeine; the outward current became larger and there was an inward tail current on repolarization during a train of depolarizing steps. (iii) These effects outlasted drive so that immediately after a train of APs, currents were already bigger and, after a train of steps, APs were already shorter. (iv) In 0.54 mM [Ca2+]o, the above effects were much smaller. (v) In high [Ca2+]o APs were shorter and outward currents larger than in low [Ca2+]o. (vi) In 10.8 mM [Ca2+]o, both outward and inward currents during long steps were exaggerated by prior drive, even with steps (+80 and +120 mV) at which there was no apparent inward current identifiable as I(Ca). (vii) In 0.54 mM [Ca2+]o, the time-dependent outward current was small and prior drive slightly increased it. (viii) During long steps, caffeine markedly increased outward and inward tail currents, and these effects were greatly decreased by low [Ca2+]o. (ix) After drive in the presence of caffeine, Ni2+ decreased the outward and inward tail currents. It is concluded that in the presence of high [Ca2+]o drive activates outward and inward Na-Ca exchange currents. During drive, the outward current participates in the plateau shortening and the inward tail current in the voltage tail after the action potential.  相似文献   

19.
20.
The whole-cell configuration of the patch clamp technique was used to study both outward and inward ion currents across the plasma membrane of tobacco (Nicotiana tabacum) protoplasts from cell-suspension cultures. The ion currents across the plasma membrane were analyzed by the application of stepwise potential changes from a holding potential or voltage ramps. In all protoplasts, a voltage- and time-dependent outward rectifying current was present. The conductance increased upon depolarization of the membrane potential (to >0 mV) with a sigmoidal time course. The reversal potential of the outward current shifted in the direction of the K+ equilibrium potential upon changing the external K+ concentration. The outward current did not show inactivation. In addition to the outward rectifying current, in about 30% of the protoplasts, a time- and voltage-dependent inward rectifying current was present as well. The inward rectifying current activated upon hyperpolarization of the membrane potential (<-100 mV) with an exponential time course. The reversal potential of the inward conductance under different ionic conditions was close to the K+ equilibrium potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号