首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Human spermatozoa were demembranated with Triton X-100 (TX) and injected into the mature eggs of Xenopus laevis. The nuclei of these spermatozoa decondensed and developed into pronuclei. Chromosomes did not appear in the eggs until the end of a 5-hr incubation period. When the demembranated human spermatozoa were further treated with dithiothreitol (DTT) before they were injected into the eggs, the sperm nuclear decondensation and pronuclear development took place considerably faster than in spermatozoa treated with the detergent alone. By the end of the 5-hr incubation period, decondensed chromatin threads or chromosome-like structures appeared, but none of the eggs cleaved. When human spermatozoa were injected into full-grown ovarian oocytes with intact germinal vesicle (GV) or oocytes which had matured without GV, the nuclei of a proportion of TX-treated and all TX-DTT-treated sperm decondensed but showed no sign of developing into pronuclei. Sperm nuclei injected into maturing oocytes formed condensed chromatin fragments as long as the oocytes were not activated, but they transformed into pronuclei when the oocytes were stimulated with electric shock. These results indicate that the cytoplasmic factors responsible for the decondensation of human sperm nuclei are present in egg cytoplasm independent of GV-materials. We also suggest that the factors controlling development of decondensed sperm nuclei into pronuclei are dependent on GV materials.  相似文献   

2.
We have previously shown that bovine oocytes parthenogenetically activated after 40 hours (hr) of in vitro maturation proceed through the cell cycle faster than those after 20 hr of maturation. In the present study, we used this model of different speed of nuclear progression to investigate the correlation of two hallmarks of nuclear events, exit of metaphase arrest and pronuclear formation, with dynamics of MPF and MAPK. Bovine oocytes were matured in vitro for 20 hr (young) or 40 hr (aged) and activated in 7% ethanol followed by incubation in cycloheximide for 0, 0.5, 1, 3, 5, or 7 hr. Activity of MPF and MAPK was lower in aged than young oocytes. The responses to oocyte activation by both the two kinases and nuclear progression were faster in aged than in young oocytes. The activity of MPF declined to undetectable levels (P < 0.05) as early as 0.5 hr after activation in aged oocytes, while this did not happen in young oocytes until 3 hr after activation. The inactivation of MAPK occurred approximately 2 hr earlier in aged oocytes (5 hr post-activation) than in young oocytes (7 hr post-activation). Furthermore, the decline in MPF activity preceded that of MAPK in both young and aged oocytes by about 2 hr. The decrease in activity of MPF and MAPK corresponded with the exit from meiosis and pronuclei formation regardless of the speed of nuclear progression. Despite dramatic changes in activity of MPF and MAPK, the levels of Cdc2 and Erk2 proteins were unchanged (P > 0.05) during the first 7 hr of activation. These observations suggest that inactivation of MPF and MAPK are pre-requisite for the release from metaphase arrest and formation of pronuclei in bovine oocytes.  相似文献   

3.
Culturing of matured porcine oocytes in vitro results in the enhancement of their cytoplasmic ability for oocyte activation (so-called ageing), although they are arrested at metaphase II. The enhanced ability for oocyte activation is related to decreased activity of the maturation promoting factor (MPF). In the present study we clarified the molecular mechanism of MPF inactivation during ageing, especially the changes in the phosphorylation status of p34cdc2, a catalytic subunit of MPF, compared with that in fertilised oocytes. The MPF activity decreased gradually when maturation culture was prolonged from 36 to 72 h, confirming the decreasing MPF activity in aged oocytes. The activity of 48 h matured oocytes also decreased after in vitro fertilisation. Immunoblotting of p34cdc2 with anti-PSTAIRE antibody revealed that the culturing of matured oocytes induces a gradual increase in pre-MPF, which is a p34cdc2 and cyclin B complex inactivated by phosphorylation at the inhibitory phosphorylation site of p34cdc2. In contrast, pre-MPF decreased after fertilisation, indicating the degradation of cyclin B. These results suggest that the molecular mechanisms of inactivation of MPF are different between oocyte activation and ageing, and that the mechanism during ageing might be based on the inhibitory phosphorylation of p34cdc2, whereas that of oocyte activation is based on the degradation of cyclin B.  相似文献   

4.
In amphibian oocytes, it is known that germinal vesicle (GV) materials are essential for sperm head decondensation but not for activation of MPF (CDK1 and cyclin B). However, in large animals, the role of GV materials in maturation and fertilization is not defined. In this study, we prepared enucleated pig oocytes at the GV stage and cultured them to examine the activation and inactivation of CDK1 and MAP kinase during maturation and after electro-activation. Moreover, enucleated GV-oocytes after maturation culture were inseminated or injected intracytoplasmically with spermatozoa to examine their ability to decondense the sperm chromatin. Enucleated oocytes showed similar activation/inactivation patterns of CDK1 and MAP kinase as sham-operated oocytes during maturation and after electro-stimulation or intracytoplasmic sperm injection. During the time corresponding to MI/MII transition of sham-operated oocytes, enucleated oocytes inactivated CDK1. However, penetrating sperm heads in enucleated oocytes did not decondense enough to form male pronuclei. To determine whether the factor(s) involved in sperm head decondensation remains associated with the chromatin after GV breakdown (GVBD), we did enucleation soon after GVBD (corresponding to pro-metaphase I, pMI) to remove only chromosomes. The injected sperm heads in pMI-enucleated oocytes decondensed and formed the male pronuclei. These results suggest that in pig oocytes, GV materials are not required for activation/inactivation of CDK1 and MAP kinase, but they are essential for male pronucleus formation.  相似文献   

5.
Immature oocytes of the starfish, Asterina pectinifera, are polyspermic. Spermatozoa can enter immature oocytes upon insemination, but the changes associated with the fertilization process in oocytes matured with 1-methyladenine (1-MeAde), such as the formation of aster and pronucleus, were not observed. After immature oocytes, previously inseminated, were matured with 1-MeAde, the formation of the sperm monaster was observed during germinal vesicle breakdown (GVBD). Amphiasters and pronuclei were formed after the formation of the second polar body. The acquisition by oocytes of the capacity to undergo the normal process of fertilization, therefore, occurs during the course of oocyte maturation. After injection of the cytoplasm of maturing oocytes into inseminated immature oocytes, the formation of aster and pronucleus was observed, suggesting that maturation-promoting factor (MPF) may be involved in establishing the cytoplasmic conditions (cytoplasmic maturity) necessary for the fertilization process to occur. In contrast, when enucleated, inseminated halves of immature oocytes were treated with 1-MeAde, only monasters were formed, while in the nucleated halves both amphiasters and sperm pronuclei were formed. Thus, germinal vesicle material is required for the formation of amphiaster and sperm pronucleus but not for the formation of monaster. It is possible that the amount of MPF produced in enucleated halves was sufficient only for the formation of the monaster but not for the formation of the amphiaster and pronucleus, since it has been previously established that germinal vesicle material is necessary for the amplification of MPF. The formation of the monaster in the enucleated halves at a time corresponding to GVBD in nucleated controls suggests that the amount of MPF needed for this event is rather small. For the induction of subsequent fertilization process, large amounts of MPF may be required to establish the necessary cytoplasmic conditions, although other possible role of nuclear material is not excluded.  相似文献   

6.
Fully grown immature oocytes acquire the ability to be fertilized with sperm after meiotic maturation, which is finally accomplished by the formation and activation of the maturation-promoting factor (MPF). MPF is the complex of Cdc2 and cyclin B, and its function in promoting metaphase is common among species. The Mos/mitogen-activated protein kinase (MAPK) pathway is also commonly activated during vertebrate oocyte maturation, but its function seems to be different among species. We investigated the function of the Mos/MAPK pathway during oocyte maturation of the frog Rana japonica. Although MAPK was activated in accordance with MPF activation during oocyte maturation, MPF activation and germinal vesicle breakdown (GVBD) was not initiated when the Mos/MAPK pathway was activated in immature oocytes by the injection of c-mos mRNA. Inhibition of Mos synthesis by c-mos antisense RNA and inactivation of MAPK by CL100 phosphatase did not prevent progesterone-induced MPF activation and GVBD. However, continuous MAPK activation and MAPK inhibition through oocyte maturation accelerated and delayed MPF activation, respectively. Furthermore, Mos induced a low level of cyclin B protein synthesis in immature oocytes without the aid of MAPK. These results suggest that the general function of the Mos/MAPK pathway, which is not essential for MPF activation and GVBD in Rana oocytes, is to enhance cyclin B translation by Mos itself and to stabilize cyclin B protein by MAPK during oocyte maturation.  相似文献   

7.
Three experiments were conducted to evaluate the effect of oocyte and sperm treatments on rates of in vitro fertilization (IVF) in the horse and to determine the capacity of in vitro-matured horse oocytes to be fertilized in vivo. There was no effect of duration of oocyte maturation (24 vs. 42 h) or calcium ionophore concentration during sperm capacitation (3 microM vs. 7.14 microM) on in vitro fertilization rates. Oocytes matured in 100% follicular fluid had significantly higher fertilization (13% to 24%) than did oocytes matured in maturation medium or in 20% follicular fluid (0% to 12%; P < 0.05). There was no significant difference in fertilization rate among 3 sperm treatments utilizing 7.14 microM calcium ionophore (12% to 21%). Of in vitro-matured oocytes recovered 40-44 h after transfer to the oviducts of inseminated mares, 77% showed normal fertilization (2 pronuclei to normal cleavage). Cleavage to 2 or more cells was seen in 22% of oocytes matured in follicular fluid and 63% of oocytes matured in maturation medium; this difference was significant (P < 0.05). We conclude that in vitro-matured horse oocytes are capable of being fertilized at high rates in the appropriate environment and that in vitro maturation of oocytes in follicular fluid increases fertilization rate in vitro but reduces embryo development after fertilization in vivo. Further work is needed to determine the optimum environment for sperm capacitation and IVF in the horse.  相似文献   

8.
Ovulated mouse oocytes are activated by exposure to culture medium containing Sr2+ or Ba2+ or by intracytoplasmic injection of the divalent cations. It is known that in vitro matured pig oocytes are activated by the intracytoplasmic injection of Ca2+. In this study, we examined the effect of exposure and of intracytoplasmic injection of Sr2+ or Ba2+ on in vitro matured pig oocytes (MII-oocytes). When MII-oocytes were exposed to the medium containing divalent cations, no oocytes were activated. However, in the case of oocytes that were injected with Sr2+, Ba2+ and Ca2+, at 6 h after injection, 64%, 71% and 86% of the oocytes had been released from MII-arrest, and 51%, 67% and 84% formed female pronuclei, respectively. The initial transient in intracellular Ca2+ concentration ([Ca2+]i) was measured by the Ca2+ indicator dye fluo-4 dextran. Microinjection of Sr2+, Ba2+ or Ca2+ induced a rapid elevation of [Ca2+]i. The exocytosis of cortical granules was examined by staining with fluorescein isothiocyanate (FITC)-labelled peanut agglutinin. After an injection of divalent cations, a release of cortical granules was observed in the oocytes. Maturation promoting factor (MPF) activity declined to a low level after 6 h in all the oocytes injected with divalent cations. To test their developmental ability, injected oocytes were treated with cytochalasin B and then cultured for 168 h in NCSU23 medium. After 168 h, 29% (Sr2+), 29% (Ba2+) and 51% (Ca2+) of the oocytes had developed to the blastocyst stage. These results indicate that intracytoplasmic injection of Sr2+ and Ba2+, like that of Ca2+, induces in vitro matured pig oocytes to be released from MII-arrest and leads them into a series of events related to oocyte activation.  相似文献   

9.
Control of oocyte aging during manipulation of matured oocytes should have advantages for recently developed reproductive technologies, such as cloning after nuclear transfer. We have shown that the enhanced activation ability and fragmentation of porcine in vitro matured and aged oocytes bore a close relationship to the gradual decrease in maturation/M-phase promoting factor (MPF) activity and that porcine aged oocytes contained plenty of MPF, but it was in an inactive form, pre-MPF, as a result of phosphorylation of its catalytic subunit p34(cdc2) and, therefore, had low MPF activity. We incubated porcine oocytes with vanadate and caffeine, which affected the phosphorylation status and MPF activity, and evaluated their activation abilities and fragmentation frequencies. Incubation of nonaged oocytes with vanadate increased p34(cdc2) phosphorylation and reduced MPF activity to levels similar to those of aged oocytes and increased their parthenogenetic activation and fragmentation rates compared with those of the control oocytes. Conversely, treating aged oocytes with caffeine reduced p34(cdc2) phosphorylation and increased MPF activity. These oocytes showed significantly lower parthenogenetic activation and fragmentation rates than aged mature oocytes. These results suggest that MPF activity is a key mechanism of oocyte aging and controlling MPF activity by altering p34(cdc2) phosphorylation with these chemicals may enable oocyte aging to be manipulated in vitro. We expect those ideas will be applied practically to pig cloning.  相似文献   

10.
Our objective was to examine the developmental fate of sperm nuclei in oocytes fertilized under conditions of meiotic arrest. Therefore zona-free metaphase II oocytes and oocyte fragments (nucleate and anucleate) were fertilized in the presence of colcemid. In anucleate oocyte fragments, normal male pronuclei develop. In contrast, in intact oocytes and nucleate fragments sperm nuclei after initial decondensation undergo secondary condensation. This state is maintained as long as the oocytes are treated with colcemid. When the drug is removed 3 h after insemination, the meiotic spindle(s) is reconstructed, the second polar body(ies) is extruded, and a female pronucleus (or micronuclei) forms. At the same time the sperm nucleus decondenses again and transforms into a male pronucleus. In addition oocytes fertilized in the presence of colcemid could not be refertilized. These observations suggest that oocytes and oocyte fragments fertilized in the presence of colcemid undergo activation despite the failure of pronucleus formation. The inhibitory effect of colcemid on the formation of pronuclei is expressed only in the presence of oocyte chromosomes. We suggest that colcemid stabilizes factors responsible for chromosome condensation that are associated with oocyte chromosomes but not factors (whether the same or different) present in the cytoplasm.  相似文献   

11.
The inhibitory effect of actinomycin D (5 micrograms/ml) on maturation of the follicle-enclosed oocytes of Rana temporaria and Xenopus laevis induced in vitro by pituitary suspension and human chorionic gonadotropin, respectively, is not observed at low concentrations of the hormones. These data suggest that nuclei of the follicle cells are not involved in the control of the pituitary-dependent oocyte maturation in amphibians.  相似文献   

12.
Detergent-pretreated spermatozoa of the toad, Bufo bufo japonicus, transform into pronuclei when injected into progesterone-matured oocytes at 18 hr post-hormone treatment (PHT). These sperm, however, do not show any change when injected into the oocytes at the same age from which the germinal vesicle (GV) has been removed before the progesterone treatment. In an attempt to determine when and how the pronucleus-inducing activity (PIA) develops in hormonally induced maturation process, enucleated oocytes were injected with GV and sperm at various stages after the hormone treatment and electrically stimulated at 18 hr PHT. It was found that sperm pronuclei are induced only in those oocytes receiving GV before 14 hr PHT. The 1 hr pulse-treatment of maturing oocytes with cycloheximide between 8–18 hr PHT and the injection of sperm at 18 hr PHT revealed that PIA does not occur in the oocytes treated with the inhibitor during 10–14 hr PHT. Injection of α-amanitin into maturing oocytes had no effect in this respect. Determination of DNA synthetic activity in vitro of the oocyte extracts from various maturation stages showed that the net increase of the activity occurs before the formation of PIA. The activity of the cycloheximide-treated oocyte extracts utilizing native DNA did not correlate with the sensitivity of oocytes to the inhibitor with respect to PIA in situ. It is concluded that PIA develops, in association with the GV materials, by way of translational events at 10–14 hr PHT, being quiescent during later maturation stages, and commences to function as an activation response of oocytes at 18 hr PHT.  相似文献   

13.
The present investigation was undertaken to study the effect of addition of dbc AMP on bovine oocyte maturation and fertilization in vitro. The bovine oocytes isolated from 2–8 mm follicles were cultured for 26 h in TCM-199. The maturation rate (71.4 %) did not significantly increase after supplementation of the culture medium with dbc AMP (86.3 %.) or FSH + hCG (86.3 %). The in vitro fertilization rate of oocytes based on sperm penetration and presence of sperm tail in the ooplasm increased significantly in the dbc AMP (34.7 %) and the dbc AMP + FSH + hCG (33.9 %) treated groups when compared with untreated controls (17.9 %). However, dbc AMP treated oocytes were not able to secure the formation of male pronucleus 20 h after in vitro fertilization, while in oocytes matured in dbc AMP free medium both pronuclei were present in approximately 15 % of the penetrated oocytes. Also, the sperm head decondensation was blocked or slowed down by the dbc AMP treatment. It is concluded (1) that dbc AMP may improve the condition for the interaction of oocytes with spermatozoa, and (2) that the ooplasm of such dbc AMP treated oocytes apparently is not able to decandense the sperm head and transform it to the male pronucleus.  相似文献   

14.
The present study was conducted to clarify the relationship between histone H1 kinase (H1K) activity and events associated with in vitro fertilization of pig follicular oocytes matured in vitro. Histone H1 kinase has been shown to be homologous with a maturation promoting factor (MPF). Cumulus-oocyte complexes obtained from prepubertal gilts were cultured for 46 h in a modified Waymouth's MB752/1 medium and were then inseminated in vitro with frozen-thawed and preincubated epididymal boar spermatozoa. At 4, 6, 8 and 10 h post insemination, the oocytes were stained with 10 microg/ml Hoechst-33342 and examined under a fluorescent microscope for the stage of fertilization, according to morphological changes of oocyte nuclear chromatin and the extent of sperm penetration. Sperm penetration was observed to occur within 4 h post insemination (20.5%), and the percentage of fertilized oocytes increased (P < 0.01) to 72.9% at 8 h post insemination. Pronuclear formation was observed from 6 h post insemination (3.3%) and the percentage increased (P < 0.01) to 46.8% at 10 h post insemination. In each examination period, H1K activities in unfertilized oocytes at metaphase-II remained unchanged (112.0 fmol/h/oocyte) and were higher (P < 0.01) than those in fertilized oocytes (30.1 fmol/h/oocyte). The H1K activity in fertilized oocytes such as oocytes emitting a second polar body, oocytes with an enlarging sperm head(s) and oocytes with multiple pronuclei did not differ significantly. These results suggest that MPF in pig oocytes is inactivated shortly after sperm penetration and is maintained at the basal level throughout pronuclear formation.  相似文献   

15.
Calcineurin is required for oocyte exit from meiotic block in metaphase II (MII) stage in invertebrates and also in lower vertebrates. However, the role of calcineurin in mammalian oocyte activation is still unclear. The aim of this study was to determine whether calcineurin is involved in the processes regulating porcine oocyte activation. Indirect immunofluorescence demonstrated localization of both calcineurin subunits, CnA and CnB, especially in the cortex area of MII oocytes, in vitro fertilized and also parthenogenetically activated oocytes. After activation, the fluorescence intensity of the protein in the cortex area of oocytes remains unchanged; the protein calcineurin in the cytoplasm was recorded mainly around the pronuclei. Treatment of matured oocytes with calcineurin inhibitors, cyclosporin A (CsA) and hymenistatin I (HS-I), followed by activation with calcium ionophore A23187, significantly decreased the rate of activated oocytes compared to oocytes that were treated only with calcium ionophore (Ca-Io), (CsA+Ca-Io 25.0% v. Ca-Io 83.3%; HS-I+Ca-Io 32.5% v. Ca-Io 85.0%). Compared to the control, CsA treatment of matured oocytes followed by activation with Ca-Io did not affect the activity level of metaphase-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) in activated oocytes evaluated by kinase activity assay. Simultaneous staining of calcineurin and cortical granule content in matured oocytes showed that calcineurin distributed in the cortical area of the oocyte has not been colocalized with cortical granules content. On the other hand, the calcineurin inhibition before parthenogenetic activation leads to a reduction of the cortical reaction level compared to oocytes that were not treated with CsA (complete exocytosis: CsA+Ca-Io 2.6% v. Ca-Io 83.9%; sum of cortical granule brightness: CsA + Ca-Io 0.69 v. Ca-Io 0.15). Our results showed that calcineurin is involved in the process of pig oocyte activation and cortical granule exocytosis; however this regulation seems to be MPF and MAPK independent.  相似文献   

16.
During oocyte maturation, eggs acquire the ability to generate specialized Ca(2+) signals in response to sperm entry. Such Ca(2+) signals are crucial for egg activation and the initiation of embryonic development. We examined the regulation during Xenopus oocyte maturation of store-operated Ca(2+) entry (SOCE), an important Ca(2+) influx pathway in oocytes and other nonexcitable cells. We have previously shown that SOCE inactivates during Xenopus oocyte meiosis. SOCE inactivation may be important in preventing premature egg activation. In this study, we investigated the correlation between SOCE inactivation and the Mos-mitogen-activated protein kinase (MAPK)-maturation-promoting factor (MPF) kinase cascade, which drives Xenopus oocyte maturation. SOCE inactivation at germinal vesicle breakdown coincides with an increase in the levels of MAPK and MPF. By differentially inducing Mos, MAPK, and MPF, we demonstrate that the activation of MPF is necessary for SOCE inactivation during oocyte maturation. In contrast, sustained high levels of Mos kinase and the MAPK cascade have no effect on SOCE activation. We further show that preactivated SOCE is not inactivated by MPF, suggesting that MPF does not block Ca(2+) influx through SOCE channels, but rather inhibits coupling between store depletion and SOCE activation.  相似文献   

17.
Maturation-promoting factor (MPF), a complex of Cdc2 and cyclin B, is the final inducer of oocyte maturation. Its activity is controlled by inhibitory phosphorylation of Cdc2 on Tyr15/Thr14 and activating phosphorylation on Thr161. Full-grown immature oocytes of the African clawed frog Xenopus laevis contain inactive MPF (pre-MPF) that comprises cyclin B-bound Cdc2 phosphorylated on Tyr15/Thr14 and Thr161. The synthesis of Mos, but not cyclin B, after stimulation by the maturation-inducing steroid progesterone, is believed to be necessary for initiating Xenopus oocyte maturation through Tyr15/Thr14 dephosphorylation of pre-MPF. In contrast, amphibians other than Xenopus (and also fishes) employ a different mechanism. Full-grown immature oocytes of these species contain monomeric Cdc2 but not cyclin B. MPF is formed after hormonal stimulation by binding of the newly produced cyclin B to the pre-existing Cdc2 and is immediately activated through Thr161 phosphorylation. Mos/MAP kinase is neither necessary nor sufficient for initiating maturation in fishes and amphibians except for Xenopus. We propose a new model of MPF formation and activation during oocyte maturation that is applicable to all amphibians (as well as fishes), based on a novel concept that pre-MPF is an artificial molecule that is not essential for inducing oocyte maturation.  相似文献   

18.
19.
The appropriate in vitro bovine oocyte maturation and ethanol activation conditions for preimplantation bovine embryo parthenogenetic development to the blastocyst stage were investigated. A 7% ethanol concentration significantly enhanced (P<0.05) the proportion of activated, in vitro-matured bovine oocytes (7% ethanol, 83.4 +/- 3.2% versus 0% ethanol, 63.9 +/- 2.0%). The proportion of activated oocytes was significantly higher (P<0.05) by treatment with 7% ethanol for a minimum of 2 minutes (2 minutes, 89.8 +/- 4.0% versus 0.5 minutes 63.4 +/- 4.9%). Oocyte maturation for periods ranging from 30, 34, 38 and 44 hours resulted in a significant increase (P<0.05) in the proportion of activated oocytes, and in oocytes displaying 2 or 3 pronuclei versus oocytes matured for 26 hours. The proportion of cleaved, activated oocytes (2-cell stage), 4 -cell stage and parthenogenetic morula/blastocysts was significantly higher (P<0.05) within the 34-hour oocyte maturation treatment group. Although the 44-hour oocyte maturation treatment group displayed the highest proportion of activated oocytes with 2 pronuclei, it did not display the highest cleavage frequency, possibly due to the effects of postovulatory aging. Several morphologically normal parthenogenetic bovine blastocysts developed from oocytes that were in vitro matured for 34 hours. The ability to produce such parthenogenetic embryos will eventually facilitate investigation into the role(s) of the maternal and paternal genomes during bovine early development.  相似文献   

20.
Mitochondrial distribution and microtubule organization were examined in porcine oocytes after parthenogenesis, fertilization and somatic cell nuclear transfer (SCNT). Our results revealed that mitochondria are translocated from the oocyte's cortex to the perinuclear area by microtubules that either constitute the sperm aster in in vitro-fertilized (IVF) oocytes or originate from the donor cell centrosomes in SCNT oocytes. The ability to translocate mitochondria to the perinuclear area was lower in SCNT oocytes than in IVF oocytes. Sperm-induced activation rather than electrical activation of SCNT oocytes as well as the presence of the oocyte spindle enhanced perinuclear mitochondrial association with reconstructed nuclei, while removal of the oocyte spindle prior to sperm penetration decreased mitochondrial association with male pronuclei without having an apparent effect on microtubules. We conclude that factors derived from spermatozoa and oocyte spindles may affect the ability of zygotic microtubules to translocate mitochondria after IVF and SCNT in porcine oocytes. Mitochondrial association with pronuclei was positively related with embryo development after IVF. The reduced mitochondrial association with nuclei in SCNT oocytes may be one of the reasons for the low cloning efficiency which could be corrected by adding yet to be identified, sperm-derived factors that are normally present during physiological fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号