首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To reduce nutrient cost for lactic acid production, rice bran, one of agricultural wastes, was chosen as a nutrient source in this study. Although rice bran is rich in protein and vitamins, the use of rice bran without any treatment was inefficient in lactic acid production. Rice bran was treated by acid-hydrolysis before it was put in experiment, when it was hydrolyzed at initial pH 1, 30 g/L rice bran could provide a productivity to that degree of about 8 g/L YE, showing such a desirable result that the use of rice bran as nutrient source would be a solution for reducing nutrient cost. However, the addition of hydrolyzed rice bran prolonged lag phase of fermentation, especially, in the fermentation with rice bran hydrolyzed at initial pH 0.5, a prolonged lag phase of about 40 h was observed. According to the quantitative determination of thiamine, pyridoxine, organic nitrogen and carbon, the prolongation of lag phase might be the result from the destruction of B vitamins and excessive hydrolysis of protein. To shorten the lag phase, combining hydrolyzed rice bran with yeast extract (YE) of small amount was considered to be a solution. When 3g/L YE was combined with 30 g/L rice bran hydrolyzed at initial pH 1, obtained was a productivity 1.6 times higher than that of the control fermentation with 15 g/L YE.  相似文献   

2.
The activity and composition of leafhopper saliva are important in interactions with the host rice plant, and it may play a physiological role in detoxifying toxic plant substances or ingesting sap. We have characterized diphenoloxidase in the salivary glands of Nephotettix cincticeps, its activity as a laccase, and its presence in the watery saliva with the objective of understanding its function in feeding on rice plants. Nonreducing SDS-PAGE of salivary gland homogenates with staining by the typical laccase substrate 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), hydroquinone or syringaldazine revealed a band at a molecular mass of approximately 85 kDa at pH 5. A band also appeared at a molecular mass of approximately 200 kDa when the gels were treated with dopamine, L-3,4-dihydroxyphenylalanine (DOPA) or catechol at pH 7. The ABTS-oxidizing activity of the homogenates was drastically inhibited by N-hydroxyglycine, a specific inhibitor of laccase. However, the dopamine-oxidizing activity was not inhibited by N-hydroxyglycine, while it was inhibited by phenylthiourea (PTU). Thus, the salivary glands of N. cincticeps contain two types of phenoloxidases: a laccase (85 kDa) and a phenoloxidase (200 kDa). Laccase activity was detected in a holidic sucrose diet that was fed on for 16 h by two females, but only a trace of catechol oxidase activity was observed, suggesting that the laccase-type phenoloxidase was the predominant phenoloxidase secreted in watery saliva. The laccase exhibited an optimum pH of 4.75-5 in McIlvaine buffer and had a PI of 4.8. Enzyme activity was histochemically localized in V cells of the posterior lobe of the salivary glands. It remained at the same level throughout the adult stage from 2 days after eclosion. A possible function of N. cincticeps salivary laccase may be rapid oxidization of potentially toxic monolignols to nontoxic polymers during feeding on the rice plant. This is the first report proving that laccase occurs in the salivary glands of Hemiptera species and is secreted in the watery saliva.  相似文献   

3.
Cytosolic pyruvate kinase (EC 2.7.1.40) from leaves of the C4 plant Cynodon dactylon (L.) Pers. was purified 56-fold to apparent homogeneity by polyethylene glycol fractionation and column chromatography including Q-Sepharose anion exchanger, ADP-Agarose and gel filtration. Nondenaturing PAGE of the final preparation resulted in a single protein band that co-migrated with the pyruvate kinase activity. Gel filtration and SDS-PAGE (± DTT) showed that this enzyme has a molecular mass of 200 kDa and is a homotetramer with a subunit molecular mass of 50 kDa. The subunits are not associated to each other with S-S bonds. The enzyme has a pH optimum of 6.2 and is heat stable. Typical Michaelis-Menten kinetics was obtained for both substrates, PEP and ADP, with Km values of 64 and 235 μ M , respectively. Initial velocity studies indicated a sequential binding of the substrates to the enzyme.  相似文献   

4.
In the progress curve of the reaction of the pyruvate dehydrogenase complex, a lag phase was observed when the concentration of thiamin diphosphate was lower than usual (about 0.2-1 mM) in the enzyme assay. The length of the lag phase was dependent on thiamin diphosphate concentration, ranging from 0.2 min to 2 min as the thiamin diphosphate concentration varied from 800 nM to 22 nM. The lag phase was also observed in the elementary steps catalyzed by the pyruvate dehydrogenase component. A Km value of 107 nM was found for thiamin diphosphate with respect to the steady-state reaction rate following the lag phase. The pre-steady-state kinetic data indicate that the resulting lag phase was the consequence of a slow holoenzyme formation from apoenzyme and thiamin diphosphate. The thiamin diphosphate can bind to the pyruvate dehydrogenase complex in the absence of pyruvate, but the presence of 2 mM pyruvate increases the rate constant of binding from 1.4 X 10(4) M-1 S-1 to 1.3 X 10(5) M-1 S-1 and decreases the rate constant of dissociation from 2.3 X 10(-2) S-1 to 4.1 X 10(-3) S-1. On the other hand, the effect of pyruvate on the thiamin diphosphate binding revealed the existence of a thiamin-diphosphate-independent pyruvate-binding site in the pyruvate dehydrogenase complex. Direct evidence was also obtained with fluorescence techniques for the existence of this binding site and the dissociation constant of pyruvate was found to be 0.38 mM. On the basis of these data we have proposed a random mechanism for the binding of pyruvate and thiamin diphosphate to the complex. Binding of substrates to the enzyme complex caused an increase in the fluorescence of the dansylaziridine-labelled pyruvate dehydrogenase complex, showing that binding of substrates to the complex is accompanied by structural changes.  相似文献   

5.
A significant lag phase was observed in the accumulation of product for the reaction catalyzed by pyruvate decarboxylase (PDC) purified from mature maize kernels. The effects of pH, pyruvate, potassium chloride, PDC concentration, and Mg2+-thiamine pyrophosphate upon this lag and upon the observed cooperativity were investigated. PDC preincubated with Mg2+-thiamine pyrophosphate for six days had Michaelis-Menten kinetics, a Hill number of 1, and no apparent lag phase. The degree of saturation of PDC with Mg2+-thiamine pyrophosphate appears to have a central role in controlling the lag phase and the degree of cooperativity.  相似文献   

6.
Highly purified pyruvic decarboxylase (EC 4.1.1.1) from wheat germ catalyses the decarboxylation of hydroxypyruvate. A kinetic analysis of the activity of the enzyme with pyruvate and hydroxypyruvate as substrates suggests that a single enzyme is involved. The kinetics of decarboxylation are autocatalytic. The time lag before maximum activity is reached is affected by the concentration of hydroxypyruvate and the pH. The question whether or not hydroxypyruvate is a natural substrate for the enzyme remains unresolved, but it may be significant that at physiological pH (ca 7.5) the enzyme shows optimum activity with hydroxypyruvate, but negligible activity with pyruvate.  相似文献   

7.
A single polypeptide with ddNTP-sensitive DNA polymerase activity was purified to near homogeneity from the shoot tips of rice seedlings and analysis of the preparations by SDS-PAGE followed by silver staining showed a polypeptide of 67 kDa size. The DNA polymerase activity was found to be inhibitory by ddNTP in both in vitro DNA polymerase activity assay and activity gel analysis. Aphidicolin, an inhibitor of other types of DNA polymerases, had no effect on plant enzyme. The 67 kDa rice DNA polymerase was found to be recognized by the polyclonal antibody (purified IgG) made against rat DNA polymerase beta (pol beta) both in solution and also on Western blot. The recognition was found to be very specific as the activity of Klenow enzyme was unaffected by the antibody. The ability of rice nuclear extract to correct G:U mismatch of oligo-duplex was observed when oligo-duplex with 32P-labeled lower strand containing U (at 22nd position) was used as substrate. Differential appearance of bands at 21-mer, 22-mer, and 51-mer position in presence of dCTP was visible only with G:U mismatch oligo-duplex, but not with G:C oligo-duplex. While ddCTP or polyclonal antibody against rat-DNA pol beta inhibits base excision repair (BER), aphidicolin had no effect. These results for the first time clearly demonstrate the ability of rice nuclear extract to run BER and the involvement of ddNTP-sensitive pol beta type DNA polymerase. Immunological similarity of the ddNTP-sensitive DNA polymerase beta of rice and rat and its involvement in BER revealed the conservation of structure and function of ddNTP-sensitive DNA pol beta in plant and animal.  相似文献   

8.
Summary A plastic bag, used as a field assay chamber, assisted in the investigation of the acetylene reduction method as a technique to measure nitrogen-fixing activity in rice paddy fields. A study of the change in volume of the plastic bag and of the loss of acetylene and ethylene from the bag provided evidence that this plastic bag method was feasible in field assays. The field assay of rice at the grain ripening stage showed that the nitrogen-fixing activity increased linearly after a lag phase of 0 to 3 hours during a time-course experiment.Detachment of the aerial part of the rice plant from its root remaining in the field did not affect the nitrogen-fixing activity of the root.The markedly higher nitrogen-fixing activity in the planted areas of the field compared with the nonplanted areas between the plant rows indicated that the nitrogenase activity in the field is associated with the roots of the rice plant. re]19751204  相似文献   

9.
Laccase-like activity was detected in melanin-producing strains of Sinorhizobium meliloti mainly in cells at the stationary growth phase when copper was added to the medium. The laccase showed both syringaldazine and ABTS (2,2'-azino-bis-ethylbenzthiazoline-6-sulfonic acid) oxidase activities and was activated by the addition of 1.7 mM sodium dodecyl sulfate. Activity was totally inhibited by the addition of 1.0 mM EDTA, suggesting that the enzyme is a metal-dependent one. The enzyme was found to be cytosolic having an optimum pH of 5.0, an estimated molecular mass of 95 kDa and a K(m) of 4 microM for syringaldazine. Both laccase and tyrosinase activities were detected in melanin-producing S. meliloti strains. Plant growth-promoting (PGP) effect in rice by a laccase-producing S. meliloti strain when co-inoculated with Azospirillum brasilense Cd was observed. PGP effect by co-inoculation significantly increased plant yield compared to A. brasilense by itself. To the best of our knowledge this is the first report on laccase production in rhizobia and cooperation between Azospirillum and Sinorhizobium in rice.  相似文献   

10.
The coenzyme A-acylating 2-oxoacid:ferredoxin oxidoreductase and ferredoxin (an effective electron acceptor) were purified from the hyperthermophilic archaeon, Sulfolobus solfataricus P1 (DSM1616). The purified ferredoxin is a monomeric protein with an apparent molecular mass of approximately 11 kDa by SDS-PAGE and of 11,180+/-50 Da by MALDI-TOF mass spectrometry. Ferredoxin was identified to be a dicluster, [3Fe-4S][4Fe-4S], type ferredoxin by spectrophotometric and EPR studies, and appeared to be zinc-containing based on the shared homology of its N-terminal sequence with those of known zinc-containing ferredoxins. On the other hand, the purified 2-oxoacid: ferredoxin oxidoreductase was found to be a heterodimeric enzyme consisting of 69 kDa alpha and 34 kDa beta subunits by SDS-PAGE and MALDI-TOF mass spectrometry. The purified enzyme showed a specific activity of 52.6 units/mg for the reduction of cytochrome c with 2-oxoglutarate as substrate at 55 degrees C, pH 7.0. Maximum activity was observed at 70 degrees C and the optimum pH for enzymatic activity was 7.0 -8.0. The enzyme displays broad substrate specificity toward 2-oxoacids, such as pyruvate, 2-oxobutyrate, and 2-oxoglutarate. Among the 2-oxoacids tested (pyruvate, 2-oxobutyrate, and 2-oxoglutarate), 2-oxoglutarate was found to be the best substrate with Km and kcat values of 163 microM and 452 min(-1), respectively. These results provide useful information for structural studies on these two proteins and for studies on the mechanism of electron transfer between the two.  相似文献   

11.
Acetolactate synthase catalyzing the synthesis of alpha-acetolactate was isolated from lactic acid bacteria Lactococcus lactis subsp. lactis biovar. diacetylactis 4 and purified. Acetolactate synthase was shown to be an allosteric enzyme with low affinity for the substrate: the Km for pyruvate was 70 mM. The curve relating the dependence of enzyme activity on pyruvate concentration had a sigmoid shape. The enzyme activity persisted for 24 h in the presence of stabilizers, pyruvate, and thiamine pyrophosphate. Acetolactate synthase had the pH optimums of 5.8 and 6.5-7.0 in acetate and phosphate buffers, respectively. The temperature optimum for this enzyme was 38-40 degrees C at pH 6.5. The molecular weight of acetolactate synthase was 150 kDa. In Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the enzyme consisted of three identical subunits with a molecular weight of 55 kDa.  相似文献   

12.
The activity of the enzymes of alcoholic and lactic-acid fermentation: pyruvate decarboxylase (PDC, EC 4.1.1.1), alcohol dehydrogenase (ADH, EC 1.1.1.1), lactate dehydrogenase (LDH, EC 1.1.1.27) and the enzymes of malic acid metabolism: phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.23), NAD-dependent malate dehydrogenase (NAD-MDH, EC 1.1.1.37), and NADP-dependent malic enzyme (NADP-ME, EC 1.1.1.40) involved in the operation of biochemical pH-stat was investigated in the root tips of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) under hypoxia and anoxia. Exposures lasted for 6, 12, and 18 h. The most pronounced response was detected for the enzymes of alcoholic fermentation. The activation of ADH and PDC in wheat occurred only under hypoxia, whereas in rice it was detected both under hypoxia and anoxia. The activation of LDH in wheat occurred under hypoxia, and in rice, the activity of this enzyme was slightly enhanced. The activity of the enzymes of malic acid metabolism did not change except in wheat root tips under hypoxia when PEPC activity decreased and NADP-ME activity simultaneously rose. The role of biochemical pH-stat in the regulation of cytoplasmic pH in plant cells under oxygen deficit and the mechanisms for regulating the activities of enzymes involved in biochemical pH-stat are discussed as well as the interaction between biochemical pH-stat and other mechanisms maintaining pH of plant cells. The results are analyzed within a context of intracellular pH regulation.  相似文献   

13.
The pyruvate dehydrogenase complex from Escherichia coli shows an appreciable lag phase (tau) of some minutes when its overall reaction rate was tested with very limiting amounts of thiamin diphosphate. tau depends on the concentration of thiamin diphosphate in a nonlinear fashion. Sodium diphosphate, a competitive inhibitor with respect to thiamin diphosphate (Ki = 5.2 . 10(-4) M) prolongs the lag, while the strongly binding transition state analog thiamin thiazolone diphosphate has no effect. tau is independent of the enzyme concentration, thus no dissociation-association step is involved. Incubation of the pyruvate dehydrogenase complex with thiamin diphosphate, Mg2+, and pyruvate leads to a shortening of the lag phase, as well as to a decrease of the intrinsic tryptophan fluorescence in a time-dependent process, which evinces the same characteristics as tau. Dependence of pyruvate, as well as of the substrate analog methylacetylphosphonate, can be established by measurements of fluorescence quenching, thus ruling out an essential role of hydroxyethyl thiamin diphosphate in the process reflected by the lag phase. The results demonstrate that the lag phase is induced after the binding of both thiamin diphosphate . Mg2+ and pyruvate to the catalytic site to form a ternary enzyme complex, which undergoes subsequently a slow conformational change to an active enzyme form. This change is confined to single subunits, and no interactions between neighboring monomers could be observed. A model is proposed to describe the mechanism represented by the lag phase.  相似文献   

14.
Alanine dehydrogenase (L-alanine: NAD+ oxidoreductase, deaminating) was simply purified to homogeneity from a thermophile, Bacillus sphaericus DSM 462, by ammonium sulfate fractionation, red-Sepharose 4B chromatography and preparative slab gel electrophoresis. The enzyme had a molecular mass of about 230 kDa and consisted of six subunits with an identical molecular mass of 38 kDa. The enzyme was much more thermostable than that from a mesophile, B. sphaericus, and retained its full activity upon heating at 75 degrees C for at least 60 min and with incubation in pH 5.5-9.5 at 75 degrees C for 10 min. The enzyme can be stored without loss of its activity in a frozen state (-20 degrees C, at pH 7.2) for over 5 months. The optimum pH for the L-alanine deamination and pyruvate amination were around 10.5 and 8.2, respectively. The enzyme exclusively catalyzed the oxidative deamination of L-alanine in the presence of NAD+, but showed low amino acceptor specificity; hydroxypyruvate, oxaloacetate, 2-oxobutyrate and 3-fluoropyruvate are also aminated as well as pyruvate in the presence of NADH and ammonia. Initial velocity and product inhibition studies showed that the reductive amination proceeded through a sequential mechanism containing partially random binding. NADH binds first to the enzyme, and then pyruvate and ammonia bind in a random fashion. The products are sequentially released from the enzyme in the order L-alanine then NAD+. A dead-end inhibition by the formation of an abortive ternary complex which consists of the enzyme, NAD+ and pyruvate was included in the reaction. A possible role of the dead-end inhibition is to prevent the enzyme from functioning in the L-alanine synthesis. The Michaelis constants for the substrates were as follows: NADH, 0.10 mM; pyruvate, 0.50 mM; ammonia, 38.0 mM; L-alanine, 10.5 mM and NAD+, 0.26 mM.  相似文献   

15.
Wang Q  He P  Lu D  Shen A  Jiang N 《Journal of biochemistry》2004,136(4):447-455
In the production of pyruvate and optically active alpha-hydroxy ketones by Torulopsis glabrata, pyruvate decarboxylase (PDC, EC 4.1.1.1) plays an important role in pyruvate metabolism and in catalyzing the biotransformation of aromatic amino acid precursors to alpha-hydroxy ketones. In this paper, we have purified and characterized PDC from T. glabrata IFO005 and cloned the corresponding gene. A simple, rapid and efficient purification protocol was developed that provided PDC with high specific activity. Unlike other yeast or higher plant enzymes, known as homotetramers (alpha(4) or beta(4)) or heterotetramers (alpha(2)beta(2)), two active isoforms of PDC purified from T. glabrata IFO005 were homodimeric proteins with subunits of 58.7 kDa. We isolated the T. glabrata PDC gene encoding 563 amino acid residues and succeeded in overproducing the recombinant PDC protein in Escherichia coli, in which the product amounted to about 10-20% of the total protein of the cell extract. Recombinant PDC from E. coli was purified as a homotetramer. Targeted gene disruption of PDC confirmed that T. glabrata has only one gene of PDC. This PDC gene showed about 80% homology with the genes of other yeasts, and amino acid residues involved in the allosteric site for pyruvate in other yeast PDCs were conserved in T. glabrata PDC. Both native PDC and recombinant PDC were activated by pyruvate and exhibited sigmoidal kinetics similar to those of Saccharomyces cerevisiae and higher plants. They also exhibited the similar catalytic properties: low thermostability, similar pH stability and optimal pH, and complete inhibition by glyoxylate.  相似文献   

16.
Bonete MJ  Ferrer J  Pire C  Penades M  Ruiz JL 《Biochimie》2000,82(12):1143-1150
An NAD-dependent D-2-hydroxyacid dehydrogenase (EC 1.1.1.) was isolated and characterized from the halophilic Archaeon Haloferax mediterranei. The enzyme is a dimer with a molecular mass of 101.4 +/- 3.3 kDa. It is strictly NAD-dependent and exhibits its highest activity in 4 M NaCl. The enzyme is characterized by a broad substrate specificity 2-ketoisocaproate and 2-ketobutyrate being the substrates with the higher Vmax/Km. When pyruvate and 2-ketobutyrate were the substrates the optimal pH was acidic (pH 5) meanwhile for 2-ketoisocaproate maximum activity was achieved at basic pH between 7.5 and 8.5. The optimum temperature was 52 degrees C and at 65 degrees C there was a pronounced activity decrease. This new enzyme can be used for the production of D-2-hydroxycarboxylic acid.  相似文献   

17.
The procedure of Malhotra and Kayastha ([1990] Plant Physiology 93: 194-200) for the purification to homogeneity of a phosphoenolpyruvate-specific alkaline phosphatase (PEP phosphatase) from germinating mung beans (Vigna radiata) was followed. Although a higher specific activity of 1.4 micromoles pyruvate produced per minute per milligram protein was obtained, the final preparation was less than 10% pure as judged by polyacrylamide gel electrophoresis. Attempts to further purify the enzyme resulted in loss of activity. The partially purified enzyme contained significant pyruvate kinase activity (0.13 micromole pyruvate produced per minute per milligram protein) when assayed at pH 7.2, but not at pH 8.5. The PEP phosphatase activity of the final preparation exhibited hysteresis; a lag time of 5 to 6 minutes was required before a steady-state reaction rate was attained. A western blot of the final preparation revealed an immunoreactive 57 kilodalton polypeptide when probed with monospecific rabbit polyclonal antibodies prepared against germinating castor bean cytosolic pyruvate kinase. No antigenic cross-reaction of the final preparation was observed with antibodies against castor bean leucoplast pyruvate kinase, or black mustard PEP-specific acid phosphatase. Nondenaturing polyacrylamide gel electrophoresis of the final preparation resulted in a single PEP phosphatase activity band; when this band was excised and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting, a 57 kilodalton silver-staining polypeptide was obtained that strongly cross-reacted with the anti-(cytosolic pyruvate kinase) immunoglobulin G. It is suggested that mung bean PEP-specific alkaline phosphatase activity is due to cytosolic pyruvate kinase, in which pyruvate and ortho-phosphate are formed in the absence of ADP.  相似文献   

18.
Granzyme B has been purified to homogeneity from the granules of a human cytolytic lymphocyte line, Q31, in an enzymatically active form by a three-step procedure. Q31 granzyme B hydrolyzed Na-t-butyloxycarbonyl-L-alanyl-L-alanyl-L-aspartyl (Boc-Ala-Ala-Asp) thiobenzyl ester with a kcat of 11 +/- 5 mol/s/mol enzyme and catalytic efficiency kcat/Km of 76,000 +/- 44,000 M-1 s-1. The hydrolysis of Boc-Ala-Ala-Asp thiobenzyl ester by crude Q31 Percoll fractions paralleled the tryptase activity for granule-containing fractions, which showed that granzyme B was associated with granules. When chromatographed on Sephacryl S-300, Q31 granzyme B eluted in two broad bands corresponding to dimer and monomer, both of which electrophoresed at 35 kDa in reducing NaDodSo4 polyacrylamide, and both of which showed a lag phase in assays. The lag phase in assays could be extended with 0.03 mM pepstatin. Upon elution from ion-exchange chromatography Q31 granzyme B electrophoresed at 32 kDa in reducing NaDodSO4 polyacrylamide and did not have a lag phase in assays. The amino-terminal sequence of the 32-kDa Q31 granzyme B was identical to four other human cytotoxic T-lymphocyte granzymes B in 18 of 18 positions sequenced. Purified Q31 granzyme B had a preference for substrates with Glu or Asp as the residue amino-terminal to the scissile bond; little or no activity was noted with oligopeptide substrates for trypsin-like, chymotrypsin-like, and elastase-like proteases. Human plasma alpha 1-protease inhibitor, human plasma alpha 2-protease macroglobulin, soybean and lima-bean trypsin inhibitors, bovine aprotinin, phosphoramidon, and chymostatin inhibited Q31 granzyme B. The inhibition by alpha 1-protease inhibitor was rapid enough to be of physiological significance.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号