首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural features of volatile anesthetic binding sites on proteins are being examined with the use of a defined model system consisting of a four-alpha-helix bundle scaffold with a hydrophobic core. Previous work has suggested that introducing a cavity into the hydrophobic core improves anesthetic binding affinity. The more polarizable methionine side chain was substituted for a leucine, in an attempt to enhance the dispersion forces between the ligand and the protein. The resulting bundle variant has an improved affinity (K(d) = 0.20 +/- 0.01 mM) for halothane binding, compared with the leucine-containing bundle (K(d) = 0.69 +/- 0.06 mM). Photoaffinity labeling with (14)C-halothane reveals preferential labeling of the W15 residue in both peptides, supporting the view that fluorescence quenching by bound anesthetic reports both the binding energetics and the location of the ligand in the hydrophobic core. The rates of amide hydrogen exchange were similar for the two bundles, suggesting that differences in binding affinity were not due to changes in protein stability. Binding of halothane to both four-alpha-helix bundle proteins stabilized the native folded conformations. Molecular dynamics simulations of the bundles illustrate the existence of the hydrophobic core, containing both W15 residues. These results suggest that in addition to packing defects, enhanced dispersion forces may be important in providing higher affinity anesthetic binding sites. Alternatively, the effect of the methionine substitution on halothane binding energetics may reflect either improved access to the binding site or allosteric optimization of the dimensions of the binding pocket. Finally, preferential stabilization of folded protein conformations may represent a fundamental mechanism of inhaled anesthetic action.  相似文献   

2.
The last step of the folding reaction of myoglobin is the incorporation of a prosthetic group. In cells, myoglobin is soluble, while heme resides in the mitochondrial membrane. We report here an exhaustive study of the interactions of apomyoglobin with lipid vesicles. We show that apomyoglobin interacts with large unilamellar vesicles under acidic conditions, and that this requires the presence of negatively charged phospholipids. The pH dependence of apomyoglobin interactions with membranes is a two-step process, and involves a partially folded state stabilized at acidic pH. An evident role for the interaction of apomyoglobin with lipid bilayers would be to facilitate the uptake of heme from the outer mitochondrial membrane. However, heme binding to apomyoglobin is observed at neutral pH when the protein remains in solution, and slows down as the pH becomes more favorable to membrane interactions. The effective incorporation of soluble heme into apomyoglobin at neutral pH suggests that the interaction of apomyoglobin with membranes is not necessary for the heme uptake from the lipid bilayer. In vivo, however, the ability of apomyoglobin to interact with membrane may facilitate its localization in the vicinity of the mitochondrial membranes, and so may increase the yield of heme uptake. Moreover, the behavior of apomyoglobin in the presence of membranes shows striking similarities with that of other proteins with a globin fold. This suggests that the globin fold is well adapted for soluble proteins whose functions require interactions with membranes.  相似文献   

3.
The direct measure of volatile anesthetic binding to protein is complicated by weak affinity and therefore rapid kinetics. Consequently, several puted targets for these clinically important drugs have only functional data to support a direct mode of action. While several methods for measuring some aspects of binding are available, all have significant limitations. We introduce the use of analytical chromatography for the purpose of directly measuring volatile anesthetic binding to protein, and show that it can provide estimates of both affinity and stoichiometry for proteins that can be obtained in fairly high purity and mass. Using this approach we characterize halothane binding to serum albumin as low affinity and multisite, and to myoglobin or cytochrome C as strictly nonspecific. This approach will be useful in directly characterizing equilibrium, solution binding to isolated proteins in preparation for more time-consuming methods with structural resolution.  相似文献   

4.
To understand further the weak molecular interactions between inhaled anesthetics and proteins, we studied the character and dynamic consequences of halothane binding to bovine serum albumin (BSA) and myoglobin using photoaffinity labeling and hydrogen-tritium exchange (HX). We find that halothane binds saturably and with submillimolar affinity to BSA, but either nonspecifically or with considerably lower affinity to myoglobin. Titration of halothane binding with guanidine hydrochloride suggested more protection of binding sites from solvent in BSA as compared with myoglobin. Protection factors for slowly exchanging albumin hydrogens are increased in a concentration-dependent manner by up to 27-fold with 10 mM halothane, whereas more rapidly exchanging groups of albumin hydrogens have either unaltered or decreased protection factors. Protection factors for slowly exchanging hydrogens in myoglobin are decreased by halothane, suggesting destabilization through binding to an intermediate or completely unfolded conformer. These results demonstrate the conformation dependence of halothane binding and clear dynamic consequences that correlate with the character of binding in these model proteins. Preferential binding and stabilization of different conformational states may underlie anesthetic-induced protein dysfunction, as well as provide an explanation for heterogeneity of action.  相似文献   

5.
6.
Sperm whale myoglobin can be considered as the model protein of the globin family. The pH-dependence of the interactions of apomyoglobin with lipid bilayers shares some similarities with the behavior of pore-forming domains of bacterial toxins belonging also to the globin family. Two different states of apomyoglobin bound to a lipid bilayer have been characterized by using hydrogen/deuterium exchange experiments and mass spectrometry. When bound to the membrane at pH 5.5, apomyoglobin remains mostly native-like and interacts through alpha-helix A. At pH 4, the binding is related to the stabilization of a partially folded state. In that case, alpha-helices A and G are involved in the interaction. At this pH, alpha-helix G, which is the most hydrophobic region of apomyoglobin, is available for interaction with the lipid bilayer because of the loss of the tertiary structure. Our results show the feasibility of such experiments and their potential for the characterization of various membrane-bound states of amphitropic proteins such as pore-forming domains of bacterial toxins. This is not possible with other high-resolution methods, because these proteins are usually in partially folded states when interacting with membranes.  相似文献   

7.
Xenon and dichloromethane are inhalational anesthetic agents whose binding to myoglobin has been demonstrated by X-ray crystallography. We explore the thermodynamic significance of such binding using differential scanning calorimetry, circular dichroism spectroscopy, and hydrogen-tritium exchange measurements to study the effect of these agents on myoglobin folding stability. Though specific binding of these anesthetics might be expected to stabilize myoglobin against unfolding, dichloromethane actually destabilized myoglobin at all examined concentrations of this anesthetic (15, 40, and 200 mM). On the other hand, xenon (1 atm) stabilized myoglobin. Thus, dichloromethane and xenon have opposite effects on myoglobin stability despite localization in comparably folded X-ray crystallographic structures. These results suggest a need for solution measurements to complement crystallography if the consequences of weak binding to proteins are to be appreciated.  相似文献   

8.
The conformational properties of partially folded states of apomyoglobin have been investigated using an integrated approach based on fluorescence spectroscopy and hydrogen/deuterium exchange followed by mass spectrometry. The examined states were those obtained: (i) by adding 4% v/v hexafluoroisopropanol to native myoglobin, HFIP-MG(N); (ii) by adding 4% v/v hexafluoroisopropanol to acid unfolded myoglobin, HFIP-MG(U); (iii) at pH 3.8, I-1 state; and (iv) at pH 2.0-0.2 M NaCl, A state. Proteolytic digestion of the hydrogen/deuterium exchanged proteins showed that, in I-1 state, the helices C, D, E, and F incorporate more deuterium, whereas in HFIP-MG(N) the exchange rate is similar for all protein regions. These results suggest that I-1 contains the ABGH domain in a native-like organization, whereas HFIP-MG(N) loses a large number of tertiary interactions, thus acquiring a more flexible structure. The fluorescence data are consistent with the above picture. In fact, the tryptophan/ANS energy transfer is much less efficient for the ANS-HFIP-MG(N) complex than for the other complexes, thus suggesting that the distances between the fluorophores might be increased. Moreover, fluorescence polarization measurements indicated that the rotational motion of HFIP-MG(N) occurs on a longer time scale than the other partially folded states, thus suggesting that the volume of this state could be larger. The overall results indicate that addition of hexafluoroisopropanol to native myoglobin results in the formation of a true molten globule where tertiary interactions are reduced, while the secondary structure and the globular compactness are conserved.  相似文献   

9.
E Bismuto  E Gratton    D C Lamb 《Biophysical journal》2001,81(6):3510-3521
The dynamics of the binding reaction of ANS to native and partly folded (molten globule) tuna and horse apomyoglobins has been investigated by fluorescence correlation spectroscopy and frequency domain fluorometry. The reaction rate has been measured as a function of apomyoglobin and ANS concentrations, pH, and temperature. Examination of the autocorrelation functions shows that the reaction rate is fast enough to be observed in tuna apomyoglobin, whereas the reaction rate in horse apomyoglobin is on the same time scale as diffusion through the volume or longer. Specifically, for tuna apomyoglobin at pH 7 and room temperature the on rate is 2200 microM(-1) s(-1) and the off rate is 5900 s(-1), in comparison with k(on) = 640 microM(-1) s(-1) and k(off) = 560 s(-1) for horse myoglobin as measured previously. The independence of the reaction rate from the ANS concentration indicates that the reaction rate is dominated by the off rate. The temperature dependence of the on-rate shows that this rate is diffusion limited. The temperature dependence of the off rates analyzed by Arrhenius and Ferry models indicates that the off rate depends on the dynamics of the protein. The differences between horse and tuna apomyoglobins in the ANS binding rate can be explained in terms of the three-dimensional apoprotein structures obtained by energy minimization after heme removal starting from crystallographic coordinates. The comparison of the calculated apomyoglobin surfaces shows a 15% smaller cavity for tuna apomyoglobin. Furthermore, a negative charge (D44) is present in the heme cavity of tuna apomyoglobin that could decrease the strength of ANS binding. At pH 5 the fluorescence lifetime distribution of ANS-apomyoglobin is bimodal, suggesting the presence of an additional binding site in the protein. The binding rates determined by FCS under these conditions show that the protein is either in the open configuration or is more flexible, making it much easier to bind. At pH 3, the protein is in a partially denatured state with multiple potential binding sites for ANS molecule, and the interpretation of the autocorrelation function is not possible by simple models. This conclusion is consistent with the broad distribution of ANS fluorescence lifetimes observed in frequency domain measurements.  相似文献   

10.
Functional effects of heme orientational disorder in sperm whale myoglobin   总被引:2,自引:0,他引:2  
The optical absorption and ligand binding properties of newly reconstituted sperm whale myoglobin were examined systematically at pH 8, 20 degrees C. The conventional absorbance and magnetic circular dichroism spectra of freshly reconstituted samples were identical to those of the native protein. In contrast, reconstituted azide or CO myoglobin initially exhibited less circular dichroism in the Soret wavelength region than native myoglobin. These data support the theory proposed by La Mar and co-workers (La Mar, G. N., Davis, N. L., Parish, D. W., and Smith, R. M. (1983) J. Mol. Biol. 168, 887-896) that protoheme inserts into apomyoglobin in two distinct orientations. The equilibrium and kinetic parameters for O2 and CO binding to newly reconstituted myoglobin were observed to be identical to those of the native protein. Thus, the orientation of the heme group has no effect on the physiological properties of myoglobin. This result is in disagreement with the preliminary report of Livingston et al. (Livingston, D. J., Davis, N. L., La Mar, G. N., and Brown, W. D. (1984) J. Am. Chem. Soc. 106, 3025-3026) which suggested that the abnormal heme conformation exhibited a 10-fold greater affinity and association rate constant for O2 binding. Significant kinetic heterogeneity was observed only for long-chain isonitrile binding to newly reconstituted myoglobin, and even in these cases, the rate constants for the abnormal and normal heme conformations differed by less than a factor of 4.  相似文献   

11.
A simple rapid-mixing technique is described which allows the recombination reaction between apomyoglobin and haemin to be studied within 0.3s of the splitting of myoglobin by dilute HCl. Evidence is presented that indicates that the recombination process occurs between folded 'native' apomyoglobin and monomeric haemin. Postulation of a one (or more)-intermediate recombination process, as suggested by other studies, is not necessary to explain the results. The effect, on the kinetics and mechanism of recombination, of the time of exposure to acid pH of the split myoglobin solution was investigated. The effect of temperature on the recombination kinetics was also studied.  相似文献   

12.
We studied the interactions between conformers of exocellular alpha-amylase and small unilamellar vesicles (SUV) composed of the major membrane lipids of Bacillus subtilis under physiological conditions of pH, temperature and ionic strength. Using fluorescence spectroscopy, surface plasmon resonance (SPR) and phase separation, we show that the native alpha-amylase has no affinity for the SUV, whereas a partially folded form, displaying structural properties in common with the competent state for secretion, binds to the vesicles (KA approximately 10(5) M(-1)). This association prevented its subsequent folding. The complex was destabilized in the presence of PrsA, a major peripheric lipoprotein of B. subtilis which displays a strong affinity for SUV (KA approximately 1.5x10(8) M(-1)). Vesicles coated with PrsA lost their ability to bind the partially folded conformer. The approach in vitro, in which our aim was to mimic the last stage of alpha-amylase translocation, indicates that PrsA possibly helps, in vivo, the secreted protein to acquire its native conformation by modulating the interaction between the latter and the lipid polar heads on the trans side of the cytoplasmic membrane.  相似文献   

13.
Human serum albumin (HSA) is one of the most abundant proteins in the circulatory system and plays a key role in the transport of fatty acids, metabolites, and drugs. For many drugs, binding to serum albumin is a critical determinant of their distribution and pharmacokinetics; however, there have as yet been no high resolution crystal structures published of drug-albumin complexes. Here we describe high resolution crystal structures of HSA with two of the most widely used general anesthetics, propofol and halothane. In addition, we describe a crystal structure of HSA complexed with both halothane and the fatty acid, myristate. We show that the intravenous anesthetic propofol binds at two discrete sites on HSA in preformed pockets that have been shown to accommodate fatty acids. Similarly we show that the inhalational agent halothane binds (at concentrations in the pharmacologically relevant range) at three sites that are also fatty acid binding loci. At much higher halothane concentrations, we have identified additional sites that are occupied. All of the higher affinity anesthetic binding sites are amphiphilic in nature, with both polar and apolar parts, and anesthetic binding causes only minor changes in local structure.  相似文献   

14.
The structural features of volatile anesthetic binding sites on proteins are being investigated with the use of a defined model system consisting of a four-alpha-helix bundle scaffold with a hydrophobic core. The current study describes the bacterial expression, purification, and initial characterization of the four-alpha-helix bundle (Aalpha(2)-L1M/L38M)(2). The alpha-helical content and stability of the expressed protein are comparable to that of the chemically synthesized four-alpha-helix bundle (Aalpha(2)-L38M)(2) reported earlier. The affinity for binding halothane is somewhat improved with a K(d) = 120 +/- 20 microM as determined by W15 fluorescence quenching, attributed to the L1M substitution. Near-UV circular dichroism spectroscopy demonstrated that halothane binding changes the orientation of the aromatic residues in the four-alpha-helix bundle. Nuclear magnetic resonance experiments reveal that halothane binding results in narrowing of the peaks in the amide region of the one-dimensional proton spectrum, indicating that bound anesthetic limits protein dynamics. This expressed protein should prove to be amenable to nuclear magnetic resonance structural studies on the anesthetic complexes, because of its relatively small size (124 residues) and the high affinities for binding volatile anesthetics. Such studies will provide much needed insight into how volatile anesthetics interact with biological macromolecules and will provide guidelines regarding the general architecture of binding sites on central nervous system proteins.  相似文献   

15.
E Casali  P H Petra  J B Ross 《Biochemistry》1990,29(40):9334-9343
The relationship between steroid binding and protein subunit interactions of rabbit sex steroid binding protein (rSBP) has been studied by steady-state and time-resolved fluorescence spectroscopy. The high-affinity (Ka approximately 10(8) M-1 at 4 degrees C), fluorescent estrogen d-1,3,5(10),6,8-estrapentaene-3,17 beta-diol [dihydroequilenin (DHE)] was used as a fluorescent probe of the steroid-binding site. Perturbation of the binding site with guanidinium chloride (Gdm.Cl) was monitored by changes in the steady-state fluorescence anisotropy of DHE as well as by changes in fluorescence quenching of DHE with acrylamide. The results of acrylamide quenching at 11 degrees C show that, while between 0 and 1 M Gdm.Cl the steroid-binding site is completely shielded from bulk solvent, there is decreased DHE binding. To study the subunit-subunit interactions, rSBP was covalently labeled with dansyl chloride in the presence of saturating 5 alpha-dihydrotestosterone (DHT), which yielded a dansyl-conjugated protein that retained full steroid-binding activity. The protein subunit perturbation was monitored by changes in the steady-state fluorescence anisotropy of the dansyl group. At 11 degrees C, the dansyl anisotropy perturbation, reflecting changes in global and segmental motions of the dimer protein, occurs at concentrations of Gdm.Cl above 1 M. The Gdm.Cl titration in the presence of steroids with equilibrium association constants less than 10(8) M-1 shows a plateau near 3 M Gdm.Cl at 11 degrees C; at this Gdm.Cl concentration, no DHE is bound. No plateau is observed at 21 degrees C. At higher Gdm.Cl concentrations, the dansyl fluorescence anisotropy decreases further and shows no steroid dependence. Recovery of steroid-binding activity (assayed by saturation binding with [3H]DHT), under renaturation conditions, is dependent on both steroid concentration and affinity. Both unlabeled and dansyl-labeled protein recovery the same amount of activity, and according to fluorescence anisotropy, dansyl-labeled rSBP re-forms a dimer upon dilution below 1 M or removal of Gdm.Cl. From the steroid requirement for recovery of steroid-binding activity, it appears that a conformational template is required for the dimeric protein to re-form a steroid-binding site with native-like properties.  相似文献   

16.
The molecular properties of the salt-induced partly folded acidic state of apomyoglobin as well as myoglobin were investigated by fluorescence and circular dichroism of the extrinsic fluorophore 1,8-anilinonaphthalenesulfonate. The occurrence of a fluctuating tertiary structure ("molten globule") at acidic pH in the presence of salt was suggested by the disappearance of the dichroic activity of the fluorophore bound to the partly folded protein. Moreover, the structure of the intermediate is not influenced by the presence of heme, thus suggesting that heme is not crucial in the early stage of myoglobin folding.  相似文献   

17.
It has been claimed that beta2-microglobulin (beta2-m) interacts with type I and type II collagen, and this property has been linked to the tissue specificity of the beta2-m amyloid deposits that target the osteo-articular system. The binding parameters of the interaction between collagen and beta2-m were determined by band shift electrophoresis and surface plasma resonance by using bovine collagen of type I and type II and various isoforms of beta2-m. Wild-type beta2-m binds collagen type I with a Kd of 4.1 x 10(-4) M and type II with 2.3 x 10(-3) M. By the BIAcore system we monitored the binding properties of the conformers of the slow phase of folding of beta2-m. The folding intermediates during the slow phase of folding do not display any significant difference with respect to the binding properties of the fully folded molecule. The affinity of beta2-m truncated at the third N-terminal residue does not differ from that reported for the wild-type protein. Increased affinity for collagen type I is found in the case of N-terminal truncated species lacking of six residues. The Kd of this species is 3.4 x 10 (-5) M at pH 7.4 and its affinity increases to 4.9 x 10(-6) M at pH 6.4. Fluctuations of the affinity caused by beta2-m truncation and pH change can cause modifications of protein concentration in the solvent that surrounds the collagen, and could contribute to generate locally a critical protein concentration able to prime the protein aggregation.  相似文献   

18.
The heme d1 prosthetic group isolated from Pseudomonas cytochrome oxidase combines with apomyoglobin to form a stable, optically well-defined complex. Addition of ferric heme d1 quenches apomyoglobin tryptophan fluorescence suggesting association in a 1:1 molar ratio. Optical absorption maxima for heme d1.apomyoglobin are at 629 and 429 nm before, and 632 and 458 nm after dithionite reduction; they are distinct from those of heme d1 in aqueous solution but more similar to those unobscured by heme c in Pseudomonas cytochrome oxidase. Cyanide, carbon monoxide and imidazole alter the spectrum of heme d1.apomyoglobin demonstrating axial coordination to heme d1 by exogeneous ligands. The cyanide-induced optical difference spectra exhibit isosbestic points, and a Scatchard-like analysis yields a linear plot with an apparent dissociation constant of 4.2 X 10(-5) M. However, carbon monoxide induces two absorption spectra with Soret maxima at 454 or 467 nm, and this duplicity, along with a shoulder that correlates with the latter before binding, suggests multiple carbon monoxide and possibly heme d1 orientations within the globin. The 50-fold reduction in cyanide affinity over myoglobin is more consistent with altered heme pocket interactions than the intrinsic electronic differences between the two hemes. However, stability of the heme d1.apomyoglobin complex is verified further by the inability to separate heme d1 from globin during dialysis and column chromatography in excess cyanide or imidazole. This stability, together with a comparison between spectra of ligand-free and -bound derivatives of heme d1-apomyoglobin and heme d1 in solution, implies that the prosthetic group is coordinated in the heme pocket through a protein-donated, strong-field ligand. Furthermore, the visible spectrum of heme d1.apomyoglobin varies minimally with ligand exchange, in contrast to the Soret, which suggests that much spectral information concerning heme d1 coordination in the oxidase is lost by interference from heme c absorption bands. A comparison of the absorption spectra of heme d1.apomyoglobin and Pseudomonas cytochrome oxidase, together with a critical examination of the previous axial ligand assignments from magnetic resonance techniques in the latter, implies that it is premature to accept the assignment of bishistidine heme d1 coordination in oxidized, ligand-free oxidase and other iron-isobacteriochlorin-containing enzymes.  相似文献   

19.
We have studied the effects of the local anesthetic lidocaine, and the general anesthetic halothane, on the function and oligomeric state of the CA-ATPase in cardiac sarcoplasmic reticulum (SR). Oligomeric changes were detected by time-resolved phosphorescence anisotropy (TPA). Lidocaine inhibited and aggregated the Ca-ATPase in cardiac SR. Micromolar calcium or 0.5 M lithium chloride protected against lidocaine-induced inhibition, indicating that electrostatic interactions are essential to lidocaine inhibition of the Ca-ATPase. The phospholamban (PLB) antibody 2D12, which mimics PLB phosphorylation, had no effect on lidocaine inhibition of the Ca-ATPase in cardiac SR. Inhibition and aggregation of the Ca-ATPase in cardiac SR occurred at lower concentrations of lidocaine than necessary to inhibit and aggregate the Ca-ATPase in skeletal SR, suggesting that the cardiac isoform of the enzyme has a higher affinity for lidocaine. Halothane inhibited and aggregated the Ca-ATPase in cardiac SR. Both inhibition and aggregation of the Ca-ATPase by halothane were much greater in the presence of PLB antibody or when PLB was phosphorylated, indicating a protective effect of PLB on halothane-induced inhibition and aggregation. The effects of halothane on cardiac SR are opposite from the effects of halothane observed in skeletal SR, where halothane activates and dissociates the Ca-ATPase. These results underscore the crucial role of protein-protein interactions on Ca-ATPase regulation and anesthetic perturbation of cardiac SR.  相似文献   

20.
Halothane distribution and elimination from rabbit brain was studied in vivo using 19F-NMR spectroscopy. Two exponential decay functions for the anesthetic were observed in the clearance curve. They are assigned to halothane in brain held in two distinct chemical environments characterized by different chemical shifts, and half-lives (25 and 320 min). A nonvolatile halothane metabolite with a half-life of several days was found to be present in rabbit brains. The in vivo results were corroborated by ex vivo experiments on excised brain tissue. Halothane was distributed in all of the major cell subfractions, whereas the metabolite was present predominantly in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号