首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compartmentation and control of arginine metabolism in Neurospora.   总被引:15,自引:13,他引:2       下载免费PDF全文
The fate of [14-C]arginine derived from the medium or from biosynthesis has been examined in Neurospora growing in arginine-supplemented medium. In both cases the label enters the cytosol, where it is used efficiently for both protein synthesis and catabolism before mixing with the majority of the endogenous [12C]arginine pool. Both metabolic processes appear to use the same cytosolic arginine pool. It is calculated that the nonorganellar cytoplasm contains approximately 20% of the intracellular arginine pool when the cells are growing in arginine-supplemented medium. The results suggest that compartmentation of arginine is a significant factor in controlling arginine metabolism in Neurospora. The significance of these results for studies of amino acid metabolism in other eukaryotic systems is discussed.  相似文献   

2.
Control of arginine utilization in Neurospora.   总被引:8,自引:6,他引:2       下载免费PDF全文
The response of Neurospora to changes in the availibility of exogenous arginine was investigated. Upon addition of arginine to the growth medium, catabolism is initiated within minutes. This occurs prior to expansion of the arginine pool or augmentation of catabolic enzyme levels. (Basal levels are approximately 25% of those found during growth in arginine-supplemented medium.) Catabolism of arginine is independent of protein synthesis, indicating that the catabolic enzymes are active but that arginine is not available for catabolism unless present in the medium. Upon exhaustion of the supply of exogenous arginine, catabolism ceases abruptly, despite an expanded arginine pool and induced levels of the catabolic enzymes. The arginine pool supports protein synthesis until the cells regain their normal capacity for endogenous arginine synthesis. These observations, combined with the known small level of induction of arginine catabolic enzymes, non-repressibility of most biosynthetic enzymes, and vesicular localization of the bulk of the arginine pool, suggest that compartmentation plays a significant role in controlling arginine metabolism in Neurospora.  相似文献   

3.
14C-arginine rich basic protein isolated from the cytoplasm of Ehrlich ascites tumor cells neutralizes the anticoagulant of activity heparin. The action of this protein is greater than H3 histone rich in arginine derived from calf thymus.  相似文献   

4.
Compartmental behavior of ornithine in Neurospora crassa.   总被引:4,自引:0,他引:4  
In Neurospora cells grown on minimal medium, most of the large ornithine pool is found in osmotically sensitive organelles, the "vesicles." In this paper kinetic studies on the compartmental behavior of ornithine and its derivatives are reported. Analysis of the metabolism of a 10(-7) M pulse of uniformly labeled L-[14C] ornithine supports the following conclusions: (a) Over 98% of the cellular ornithine is in the vesicles. (b) The amount of ornithine normally in the cytosol is about 0.3% of the cellular ornithine, as shown by the kinetics of incorporation of 14C into putrescine via the cytosolic enzyme, ornithine decarboxylase (EC 4.1.1.17). (c) Mitochondria, the site of ornithine synthesis, contain about 1% of the cellular ornithine, as demonstrated by the kinetics of incorporation of 14C into citrulline via the mitochondrial enzyme, ornithine transcarbamylase (EC 2.1.3.3). (d) Considerable ornithine exchange, and a net efflux of ornithine, takes place across the mitochondrial membrane. (e) Ornithine aminotransferase (EC 2.6.1.13), a catabolic enzyme, may have a special relation to the cell membrane in cells grown in minimal medium. This enzyme uses ornithine efficiently while it enters from the medium, but very poorly after all the [14C] ornithine is within the cell. (f) Citrulline and proline are not compartmented with respect to the enzymes using them. (g) In contrast, arginine is distributed such that over 99% is in vesicles. We suggest that the vesicles; with their ability to sequester ornithine and arginine, are potentially significant in regulation.  相似文献   

5.
The pathway of arginine biosynthesis in Streptococcus bovis was studied by radioactive tracer techniques. Cells were grown anaerobically with (14)CO(2) in a synthetic medium containing NH(4) (+) as the sole nitrogen source except for the trace present in nitrogen-containing vitamins. The protein fraction isolated from the labeled cells was acid-hydrolyzed, and (14)C-arginine was isolated from the protein hydrolysate by ion-exchange chromatography. The carboxyl carbon of the isolated arginine was removed with arginine decarboxylase, and the guanidino carbon was removed by simultaneous arginase-urease degradation. By manometric measurement and liquid scintillation counting of the CO(2) released by enzymatic degradation, 50% of the label was found in the carboxyl carbon and 50% in the guanidino carbon. Specific radioactivity determinations indicated that growth on (14)CO(2) resulted in twice as much label in arginine as with aspartate, glutamate, or lysine. These results are consistent with a glutamate --> ornithine --> citrulline pathway of arginine biosynthesis in S. bovis and provide further evidence for the synthesis of glutamate via the tricarboxylic acid cycle reactions from citrate through alpha-ketoglutarate.  相似文献   

6.
The effect of carbohydrate on arginine utilization by excised bean (Phaseolus vulgaris L. var. Tendergreen) leaves in the dark was studied by adding arginine to leaves differing in carbohydrate levels, and measuring the arginine content of the leaves at intervals. In nonstarved leaves, the arginine content decreased steadily after vacuum infiltration of 10 mm arginine and was essentially completely utilized by 36 hours after infiltration. In starved leaves, the arginine content did not decrease except for a brief period of about 4 hours after infiltration. The distribution of (14)C after adding (14)C-arginine to starved and nonstarved leaves indicated that the presence of carbohydrates in the leaves stimulates the utilization of arginine for protein synthesis and conversion to other amino acids, organic acids, and CO(2) (catabolism). Adding sucrose along with arginine to starved leaves stimulated this utilization of arginine for both protein synthesis and catabolism. This effect of sugar on catabolism is different than results of similar studies done previously with proline.Increasing the concentration of added arginine greatly increased arginine catabolism but had a relatively small effect on utilization of arginine for protein synthesis. This result is the same as similar results from adding different concentrations of proline to excised leaves.  相似文献   

7.
The flux into the arginine biosynthetic pathway of Neurospora crassa was investigated using a mutant strain lacking the ornithine-degrading enzyme ornithine aminotransferase (EC 2.6.1.13). Flux was measured by the increase in the sum of the radioactivity (derived from [14C]glutamic acid) in the ornithine pool, the arginine pool, and arginine incorporated into proteins. Complete cessation of flux occurred immediately upon the addition of arginine to the growth medium. This response occurred prior to expansion of the arginine pool. After short-term exposure to arginine (80 min), flux resumed quickly upon exhaustion of arginine from the medium. This took place despite the presence of an expanded arginine pool. Initiation of flux required approximately 80 min when the mycelia were grown in arginine-supplemented medium for several generations before exhaustion of the exogenous arginine. The arginine pool of such mycelia was similar to that found in mycelia exposed to exogenous arginine for only 80 min. The results are consistent with rapid onset and release of feedback inhibiton of arginine biosynthesis in response to brief exposure to exogenous arginine. The insensitivity of flux to the size of the arginine pool is consistent with a role for compartmentation in this regulatory process. The lag in initiation of flux after long-term growth in the presence of exogenous arginine suggests the existence of an additional regulatory mechanism(s). Several possibilities are discussed.  相似文献   

8.
It has been found that, in Neurospora crassa, arginine synthesized from exogenous citrulline was not as effectively hydrolyzed as exogenous arginine. This was explained by the observed inhibition of arginase in vitro and in vivo by citrulline. The high arginine pool formed from exogenous citrulline feedback inhibits the arginine pathway. These two factors allow exogenous citrulline to be used adventitiously and efficiently as an arginine source. Finally, it was found that ornithine was a strong inhibitor of arginase. This suggests that the characteristically high ornithine pool of minimal cultures of Neurospora may act to control a potentially wasteful catabolism of endogenous arginine by arginase.  相似文献   

9.
1. Relationships between intracellular amino acid concentrations and uptake rates and their utilization in synthesis of cell-specific peptides in neurons R3-R14 in the Aplysia parietovisceral ganglion are explored. 2. The uptake rates and intracellular concentrations of most amino acids are positively correlated and inversely related to their degree of incorporation into the peptides. 3. The bulk cellular pool of arginine is probably utilized in the synthesis of R3-R14 peptides, but much of the glycine taken up appears not to be readily available for protein synthesis. 4. There are rapidly and slowly turning over pools of the peptides, and portions of the peptides stay in the cell bodies for days.  相似文献   

10.
We have shown that nitric oxide production is dramatically decreased in rat primary hepatocyte cultures exposed to galactosamine. Cotreatment of the cells with uridine, which is known to prevent cytotoxicity, was found to also attenuate NO loss. In the present study, two possible mechanisms for the decreased nitric oxide production were examined. First, we examined the possibility that galactosamine could interfere with the uptake of extracellular arginine by the cultured hepatocytes. Cellular uptake of arginine was determined after addition of 14C-arginine at the time of hepatocyte attachment. Uptake of arginine was rapid in control cultures, and both the rate and level of uptake were unchanged by the addition of a cytotoxic concentration of galactosamine (4 mM). In addition, increased concentrations of arginine in the cell culture medium did not ameliorate the galactosamine-induced decrease in production of nitric oxide. Second, we determined whether the synthesis of inducible nitric oxide synthase in the hepatocyte cultures was inhibited by addition of galactosamine. Hepatocyte levels of inducible nitric oxide synthase were determined immunochemically at various times after the addition of galactosamine (4 mM). In control cultures, inducible nitric oxide synthase was detectable at 7 and 24 hours after attachment. In contrast, no nitric oxide synthase protein was detectable at any time in the galactosamine-treated cultures. Furthermore, addition of galactosamine after inducible nitric oxide synthase had already been synthesized (6.5 h after attachment) did not result in suppression of nitric oxide production in the hepatocyte cultures. The present studies suggest that galactosamine suppresses nitric oxide production in hepatocyte cultures by inhibiting synthesis of inducible nitric oxide synthase, rather than by interference in cellular uptake of arginine.  相似文献   

11.
Barley (Hordeum vulgare cv Prior) leaves converted l-U-(14)C-arginine to labeled proline. Accumulation of radioactivity in proline was greater in wilted leaves, but only after 9 hours of incubation. As the increase in free proline was detectable after only 3 to 6 hours, it is likely that the observed stimulation of proline labeling represents a result rather than a cause of proline accumulation. Furthermore, the loss of total arginine during water stress was only 10 to 15% of the increase in proline. We conclude that arginine probably contributes less than 1% of the carbon in the expanding proline pool of wilted barley leaves.  相似文献   

12.
Although normal intracellular levels of arginine are well above the K(m), and should be sufficient to saturate nitric oxide synthase in vascular endothelial cells, nitric oxide production can, nonetheless, be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox," has suggested the existence of a separate pool of arginine directed to nitric oxide synthesis. In this study, we demonstrate that exogenous citrulline was as effective as exogenous arginine in stimulating nitric oxide production and that citrulline in the presence of excess intracellular and extracellular arginine further enhanced bradykinin stimulated endothelial nitric oxide production. The enhancement of nitric oxide production by exogenous citrulline could therefore be attributed to the capacity of vascular endothelial cells to efficiently regenerate arginine from citrulline. However, the regeneration of arginine did not affect the bulk intracellular arginine levels. This finding not only supports the proposal for a unique pool of arginine, but also suggested channeling of substrates that would require a functional association between nitric oxide production and arginine regeneration. To support this proposal, we showed that nitric oxide synthase, and the enzymes involved in arginine regeneration, argininosuccinate synthase and argininosuccinate lyase, cofractionated with plasmalemmal caveolae, a subcompartment of the plasma membrane. Overall, the results from this study strongly support the proposal for a separate pool of arginine for nitric oxide production that is defined by the cellular colocalization of enzymes involved in nitric oxide production and the regeneration of arginine.  相似文献   

13.
The bulk of the intracellular arginine pool in exponentially growing mycelia of Neurospora crassa is sequestered in the vacuoles. Vacuolar arginine effluxes from the vacuoles into the cytosol and is catabolized to ornithine and urea upon nitrogen starvation. The energy requirement for mobilization has been studied by treating nitrogen-starved mycelia with inhibitors or respiration or glycolysis or an uncoupler of respiration. Mobilization was inhibited by the inhibitors or the uncoupler of respiration, but not by the inhibitors of glycolysis. The inhibitors and the uncoupler of respiration reduced the ATP pool and the energy charge of the treated mycelia. The inhibitors of glycolysis reduced the ATP pool but had no effect on the energy charge. The results indicate that mobilization of arginine from the vacuoles requires metabolic energy. The forms of this energy and the mode of its association with the mobilization process are discussed.  相似文献   

14.
Monolayer cultures of human fibroblasts were incubated for 24 h with 14C-arginine and observed by means of SIMS microscopy (ion microscopy). Carbon 14 imaging showed the intracellular distribution of labelled arginine which featured high nuclear incorporation. The local concentration of this amino acid in different cells and intracellular structures was assessed through local isotopic 14C/12C ratio measurement. This relates the signal intensity of the labelling isotope carbon 14 to that of the corresponding natural isotope (carbon 12) of known tissular concentration. Using this method we were able to measure minor variations in the molecular concentration of arginine (expressed as mumol/g of tissue) between different fibroblasts. Results of this study indicate that SIMS microscopy is well adapted to carbon 14 detection and can provide quantitative maps of the cellular and subcellular distribution of 14C-labelled molecules.  相似文献   

15.
Protein synthesis at different stages of yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans was evaluated by following incorporation of radioactive amino acids into the acid-insoluble cellular material. In passing from the early germ-tube formation (60-90 min) to the mature hyphal cell (240-270 min) there was a marked decrease in the capacity for protein synthesis. Apparently, this decrease was not due to a decreased amino acid uptake into the soluble cellular pool or to exhaustion of carbon/energy source in the inducing medium with consequent arrest of growth. Protein synthesis, however, did not decay when amino acids at high concentration were added to the medium fostering the yeast-mycelial transition and this effect was potentiated by glucose. Analysis of the intracellular amino acid pool showed that both germ-tubes and hyphal cells were relatively depleted of several amino acids as compared to the yeast-form cells, whereas in the hyphae there was a higher concentration of glutamic acid/glutamine, the latter being the predominant component. These modulations in amino acid pool composition were not seen when yeasts were converted to hyphae in an amino acid-rich induction medium. This study emphasizes that yeast-form cells of C. albicans may efficiently convert to the mycelial form even under a progressively lowered rate of protein synthesis, and suggests that initiation of hyphal morphogenesis in the presence of N-acetyl-D-glucosamine is somehow separated from cellular growth.  相似文献   

16.
Ornithine carbamoyltransferase and argininosuccinase, two enzymes involved in arginine synthesis, are regulated by cross-pathway amino acid control in Neurospora and show derepression in response to limitation of any one of a number of amino acids. The effects of varying the severity of arginine limitation upon the synthesis of these enzymes, in mycelial cultures of an arginine auxotrophic strain, are reported here. Depression occurred at arginine concentrations sufficient to allow normal rates of protein accumulation, leading to increases of not more than fourfold in the absolute rate of enzyme synthesis. On the other hand, differential rates of enzyme synthesis increased progressively up to 20-fold or more under extreme conditions of arginine limitation that also limit net protein synthesis. The major part of the derepression response thus occurred at arginine concentrations that allowed low net rates of protein synthesis. The physiological significance of this is not yet understood. Our evidence suggests that these responses were mediated entirely through the cross-pathway control system, and may not be untypical (allowing for variations in magnitude) of depression resulting through this mechanism in Neurospora.  相似文献   

17.
During growth on minimal medium, cells of Neurospora contain three pools of ornithine. Over 95% of the ornithine is in a metabolically inactive pool in vesicles, about 1% is in the cytosol, and about 3% is in the mitochondria. By using a ureaseless strain, we measured the rapid flux of ornithine across the membrane boundaries of these pools. High levels of ornithine and the catabolic enzyme ornithine aminotransferase coexist during growth on minimal medium but, due to the compartmentation of the ornithine, only 11% was catabolized. Most of the ornithine was used for the synthesis of arginine. Upon the addition of arginine to the medium, ornithine was produced catabolically via the enzyme arginasn early enzyme of ornithine synthesis. The biosynthesis of arginine itself, from ornithine and carbamyl phosphate, was halted after about three generations of growth on arginine via the repression of carbamyl phosphate synthetase A. The catabolism of arginine produced ornithine at a greater rate than it had been produced biosynthetically, but this ornithine was not stored; rather it was catabolized in turn to yield intermediates of the proline pathway. Thus, compartmentation, feedback inhibition, and genetic repression all play a role to minimize the simultaneous operation of anabolic and catabolic pathways for ornithine and arginine.  相似文献   

18.
Cells isolated from newborn rat hearts were cultured for 10-14 days, and lipoprotein lipase activity was present in an intracellular and heparin-releasable pool. Treatment of the cultures with 10(-7) M isoproterenol for 3 min resulted in a 3-fold increase in heparin-releasable lipoprotein lipase and a concomitant decrease in residual cellular enzyme activity. Similar results were obtained by treatment with dibutyryl cAMP. Treatment with isoproterenol or dibutyryl cAMP for 2 h affected glycosylation of immunoadsorbable lipoprotein lipase, so that the ratio of [3H]galactose to [14C]mannose in the heparin-releasable enzyme increased from 3.8 (control) to 13.0 (isoproterenol-treated). The change in the ratio of the sugars in the cellular fraction of the enzyme was from 3.1 to 9.9. 2 h treatment with isoproterenol did not enhance new enzyme synthesis, as determined by incorporation of [3H]leucine into immunoadsorbable lipoprotein lipase. 24 h after addition of either isoproterenol or dibutyryl cAMP to the culture medium, stimulation of enzyme synthesis was demonstrated. The present results permit three effects of isoproterenol on lipoprotein lipase to be distinguished: stimulation of translocation from a cellular to heparin-releasable pool; enhanced processing of mannose residues and terminal glycosylation; stimulation of synthesis of enzyme protein.  相似文献   

19.
M H Gold  H J Hahn 《Biochemistry》1976,15(9):1808-1814
Particulate membrane preparations from Neurospora crassa incorporated mannose from GDP-[14C] mannose into endogenous lipid and particulate protein acceptors. Synthesis of the mannosyl lipid is reversible in the presence of GDP. Chemical and chromatographic characterization of the mannosyl lipid suggest that it is a mannosylphosphorylpolyisoprenol. The other endogenous acceptor was precipitated by trichloracetic acid. Gel filtration and electrophoresis studies before and after treatment with proteolytic enzymes indicate that the second acceptor is a glycoprotein(s). beta Elimination studies on the mannosyl protein formed from GDP-[14C] mannose with Mg2+ in the reaction mixture or formed from mannosyl lipid indicate thad with the peptide chain. Several lines of evidence indicate that in Neurospora crassa the mannosyl lipid is an obligatory intermediate in the in vitro mannosylation of the protein. (a) At 15 degrees C the initial formation of the mannosyl lipid is faster than the initial formation of the mannosyl protein. (b) Exogenous partially purified mannosyl lipid can function as a mannosyl donor for the synthesis of the mannosyl protein. This reaction was also dependent on a divalent metal. The rate of this reaction was optimal at a concentration of Triton X-100 which effectively inhibited the transfer of mannose from GDP-[14C] mannose to lipid and protein, indicating that GDP-mannose was not an intermediate in the transfer of mannose from lipid to protein. The mannosyl protein formed in this reaction was indistinguishable by several criteria from the mannosyl protein formed from GDP-[14C] mannose and Mg2+. (c) The effect of a chase with an excess of unlabeled GDP-mannose on the incorporation of mannose into endogenous acceptors was immediate cessation of the synthesis and subsequent turnover of the mannosyl lipid; in contrast, however, incorporation of mannose into protein continued and was proportional to the loss of mannose from the mannosyl lipid.  相似文献   

20.
Acetate Utilization and Macromolecular Synthesis During Sporulation of Yeast   总被引:39,自引:15,他引:24  
Acetate utilization and macromolecule synthesis during sporulation (meiosis) of Saccharomyces cerevisiae were studied. When diploid cells are transferred from glucose nutrient medium to acetate sporulation medium at early stationary phase, respiration of the exogenously supplied acetate proceeds without any apparent lag. At the completion of ascospore development, 62% of the acetate carbon consumed has been respired, 22% remains in the soluble pool, and 16% is incorporated into lipids, protein, nucleic acids, and other cell components. Measurements of the rate of protein synthesis during sporulation reveal two periods of maximal synthetic activity: an early phase coincidental with increases in deoxyribonucleic acid, ribonucleic acid, and protein cellular content and a later phase during ascospore formation. Experiments in which protein synthesis was inhibited at intervals during sporulation indicate that protein synthesis is required both for the initiation and completion of ascus development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号