首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
L K Hesterberg  J C Lee 《Biochemistry》1980,19(10):2030-2039
The enzymatic active form of rabbit muscle phosphofructokinase (PFK) was observed directly by using the method of reacting or active enzyme centrifugation (AEC). These studies were performed in two assay systems: a coupled enzyme and a pH-dependent dye-linked system in glycylglycine buffer at pH 8.55 and 23 +/- 1 degree C. The sedimenting band of PFK was stabilized by three solvent systems: 50% (v/v) D2O, 10% (w/v) sucrose, and 4% (v/v) or 10% (v/v) glycerol. The active PFK species sediments as a single component with a sedimentation coefficient of 12.4 +/- 0.5 S, after correcting for protein--solvent interactions. Although PFK may undergo association--dissociation, there is no observable change in the value of s20,w over a 57-fold range of protein concentration. Throughout this range only a single active species of PFK was observed, and within an experimental uncertainty of +/- 10%, the enzymatic activity observed in the sedimentation studies accounts for the total enzymatic activity observed in the steady-state kinetics. Partially purified PFK was subjected to AEC analysis. Results reveal the presence of again a single active form sedimenting at the same rate as the purified enzyme. Results from sedimentation velocity studies indicate that the stabilizing solvents employed in AEC enhance the self-association of PFK. However, such an enhancement alone cannot account for the observation of a single active species with a sedimentation coefficient of 12.4 S. The interactions between solvent additives and PFK were studied by density measurements and by the application of multicomponent theory. Results from such a preferential solvent interaction study indicate that PFK is preferentially hydrated in the presence of sucrose or glycerol. The enhancement of PFK self-association is most likely due to a nonspecific solvent--protein interaction.  相似文献   

2.
Immature Schistosoma mansoni in mice are less susceptible to antimony therapy than adult worms. KSb tartrate inhibited phosphofructokinase (PFK) (EC 2.7.1.11) to a greater extent in extracts of 3-week-old worms than adults, and inhibited production of lactate in both immature and adult worms in vitro. In vivo, KSb tartrate was accumulated similarly by 3-week-old worms and by adults: measurements of hexosephosphate following drug treatment suggested similar inhibition of PFK in the two worm stages. If antimony acts by inhibition of PFK it is not clear why the young worms are more resistant to chemotherapy than adults.  相似文献   

3.
6-Phosphofructo-1-kinase (PFK) isoenzyme pools from livers of fetal, neonatal, young adult (3 months) and aged (24 months) rats were studied. Near-term liver PFK isoenzyme pools were composed of nearly equal quantities of all three subunits. During the 30 days after birth, the total activity increased by 25%; the amount of the L-type, M-type or C-type subunit was increased 3-fold, was unchanged, or was decreased by 80% respectively. In aged rats, compared with young adults, total PFK activity was unchanged, but the L-type, M-type or C-type subunit decreased by 24%, increased by 39%, or increased by 338% respectively. During neonatal maturation, the changing subunit composition of the hepatic isoenzyme pools led to a decreased susceptibility to ATP inhibition, to a greater apparent affinity for fructose 6-phosphate, and to increased sensitivity to fructose 2,6-bisphosphate. Also, these alterations correlated with the measured increases in fructose 2,6-bisphosphate and the reported optimal rate of hepatic glycolysis/gluconeogenesis.  相似文献   

4.
ATP-dependent 6-phosphofructokinase (PFK) activity is present in both chloroplastic and in nonchloroplastic fractions isolated from spinach protoplasts. The activity in the extra-chloroplastic fraction was stimulated 2- to 3.5-fold by 25 mm inorganic phosphate (Pi), the chloroplast-associated activity was inhibited 2- to 5-fold. The Pi stimulated activity was ATP-dependent and was not an artifact due to the presence of fructose 6-P, Pi, pyrophosphatase, and pyrophosphate fructose 6-P 1-phosphotransferase (PFP). PFK activities, which expressed characteristics similar to those separated from protoplasts, could be separated following ammonium sulfate fractionation of crude extracts; the ammonium sulfate treatment also separated both PFK activities from PFP. It is concluded that spinach leaves contain a cytosolic PFK. This activity is relatively stable, is stimulated by Pi over a wide pH range, is not a result of the transformation of another enzyme activity, and has an activity that is similar to, or slightly less than, that of the cytosolic PFP.  相似文献   

5.
Summary Phosphofructokinase 2 (PFK 2) was isolated from mycelia of the citric-acid-accumulating fungus Aspergillus niger, and partially purified by Trisacryl-Blue chromatography and Mono Q fast protein liquid chromatography. The appearance of a 96/94-kDa double band correlated with PFK 2 activity during purification. Purified PFK 2 had a half-life of 240 min at 4° C. The enzyme exhibited Michaelis-Menten type kinetics with respect to its substrates fructose-6-phosphate and ATP, required inorgaic phosphate for activity, and was only weakly inhibited by phospho(enol)pyruvate, AMP and citrate. The enzyme activity was not influenced by incubating partially purified PFK 2 preparations with ATP, MG2+ and the catalytic subunit of bovine heart protein kinase, although such treatment phosphorylated the 96/94-kDa protein. Consistently, treatment with alkaline phosphatase had no effect on PFK 2 activity. Also, no influence on PFK 2 activity was observed when cell-free extracts (containing A. niger protein kinases) from either glucose or citrate-grown mycelia were incubated with ATP and Mg2+ alone. It is concluded that, in A. niger, regulation of PFK 2 by phosphorylation/dephosphorylation does not occur, and this is related to the development of high glycolytic flow and citrate accumulation under conditions of supplying high sugar concentrations. Correspondence to: C. P. Kubicek  相似文献   

6.
Summary A case of hereditary nonspherocytic hemolytic anemia associated with partial erythrocyte PFK deficiency without muscular symptoms is reported: erythrocyte enzyme activity in the propositus was 60% of normal. Kinetic studies of erythrocyte PFK revealed increased sensitivity to ATP inhibition and decreased sensitivity to citrate inhibition.Muscle PFK from the patient had a normal enzymatic activity, but was highly unstable to heat, dilution without stabilizer and urea; furthermore its starch gel electrophoretic mobility was markedly faster than the one of a normal control. The results suggested that a muscle type's subunit was deficient in the erythrocyte PFK.The authors hypothesize that there was no PFK deficiency in the patient's muscle because of the active synthesis of proteins by this tissue. In contrast, the deficiency of PFK would be easily detected in erythrocytes, because of the absence of protein synthesis.Attachée de recherche à l'INSERMChargé de recherche à l'INSERM  相似文献   

7.
Cytosolic ATP-phosphofructokinase (PFK) from spinach leaves (Spinacia oleracea L.) was inhibited by submillimolar concentrations of free Mg2+. The free Mg2+ concentration required for 50% inhibition of PFK activity was 0.22 millimolar. Inhibition by free Mg2+ was independent of the MgATP2− concentration. Inorganic phosphate (Pi) reduces the inhibition of PFK activity by Mg2+. Free ATP (ATP4−) also inhibits PFK activity. For free ATP the inhibition of PFK activity was dependent on the MgATP2− concentration. Fifty percent inhibition of PFK activity requires 1.2 and 3.7 millimolar free ATP at 0.1 and 0.5 millimolar MgATP2−, respectively. It was proposed that free ATP competes for the MgATP2− binding site, whereas free Mg2+ does not. Pi diminished the inhibitory effect of free ATP on PFK activity. Free ATP and Pi had substantial effects on the MgATP2− requirement of cytosolic PFK. For half-maximum saturation of PFK activity 3 and 76 micromolar MgATP2− was required at 0.007 and 0.8 millimolar free ATP in the absence of Pi. At 5 and 25 millimolar Pi, half-maximum saturation was achieved at 9 and 14 micromolar MgATP2−. PFK activity was inhibited by Ca2+. The inhibition by Ca2+ depends upon the total Mg2+ concentration. Fifty percent inhibition of PFK activity required 22 and 32 micromolar Ca2+ at 0.1 and 0.2 millimolar Mg2+, respectively. At physiological concentrations of about 0.5 millimolar free Mg2+, Ca2+ would have little effect on cytosolic PFK activity from spinach leaves. PFK is not absolutely specific for the nucleoside 5′-triphosphate substrate. Besides MgATP2−, MgUTP2−, MgCTP2−, and MgGTP2− could be used as a substrate. All four free nucleotides inhibit PFK activity. The physiological consequences of the regulatory properties of cytosolic PFK from spinach leaves will be discussed. A model will be introduced, in an attempt to describe the complex interaction of PFK with substrates and the effectors Mg2+ and Pi.  相似文献   

8.
The aim of this work was to compare the molecular properties of pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP) and ATP:fructose 6-phosphate 1-phosphotransferase (PFK). Both enzymes were purified to apparent homogeneity from potato tubers (Solanum tuberosum cv Record). Neither PFP nor PFK preparations contained detectable activity of the other enzyme. PFP was composed of two polypeptides of apparent molecular weight 58,000 and 55,700 whereas PFK contained four polypeptides of apparent molecular weight between 46,300 and 53,300. Chemical cleavage of individual PFP and PFK polypeptides gave a different set of fragments for each polypeptide. On Western blots antisera against PFP failed to cross-react with any of the four PFK polypeptides, and antibodies against PFK failed to bind to either of the PFP polypeptides. Antibodies that immunoprecipitate PFP activity had no effect on PFK activity. Conversely, antibodies against the four PFK polypeptides precipitated the activity of PFK, but not that of PFP. This work shows that potato tuber PFP and PFK are composed of distinct, unrelated polypeptides and indicate that interconversion between PFP and PFK is unlikely.  相似文献   

9.
In an earlier study, we observed a marked accumulation of antimony in erythrocytes of rats administered potassium antimony tartrate (Sb) in drinking water. This observation has raised concerns of possible adverse effects on the hematological systems. A study was therefore carried out to investigate the effects of Sb on phosphofructokinase (PFK), a rate-limiting enzyme of erythrocyte glycolysis. Preincubation of PFK with Sb caused a marked inhibition of the enzyme with 95% loss of activity at 5 mM. In comparison, 5 mM sodium arsenite, a known enzyme inhibitor, reduced PFK activity by only 38%. Increasing the concentrations of fructose-6-phosphate (F6P) or magnesium had no effects on the inhibitory potency of Sb. Varying the concentrations of ATP and Sb produced a complex effect on PFK activity. At 1 mM ATP, 0.2 mM Sb was required for 50% inhibition (IC50) of PFK but only 0.05 mM Sb was required for the same inhibition when the concentration of ATP was reduced to 0.2 mM. Glutathione (2–10 mM) and hemoglobin (8–40 <μ > M) partially protected the enzyme from the Sb effect, with the protection being more effective at low antimony concentrations. When Sb was added to assay mixtures after initiation of a PFK reaction with physiological concentrations of ATP (0.2 mM) and F6P (0.1 mM), PFK activity was approximately 50% inhibited by 0.5 mM Sb and completely inhibited by 5 mM Sb. In contrast, glucose utilization in whole blood was only 16% lower over an 8 hour incubation period in the presence of 5 mM Sb. It is concluded that while PFK is markedly inhibited by Sb under in vitro assay conditions, glycolysis in erythrocytes is not significantly affected except at very high Sb concentrations. The weak effect of Sb on glycolysis in erythrocytes may be due in part to the protective effect of hemoglobin and, to a lesser extent, glutathione on PFK. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 227–233, 1998  相似文献   

10.
The effect of fructose 2,6-P2, AMP and substrates on the coordinate inhibition of FBPase and activation of PFK in swine kidney has been examined. Fructose 2,6-P2 inhibits the activity of FBPase and stimulates the activity of PFK in the presence of inhibitory concentrations of ATP. Under similar conditions 2.2 μM fructose 2,6-P2 was required for 50% inhibition of FBPase and 0.04 μM fructose 2,6-P2 restored 50% of the activity of PFK. Fructose 2,6-P2 also enhanced the allosteric activation of PFK by AMP and it increased the extent of inhibition of FBPase by AMP. Fructose 2,6-P2, AMP and fructose 6-P act cooperatively to stimulate the activity of PFK whereas the same latter two effectors and fructose 1,6-P2 inhibit the activity of FBPase. Taken collectively, these results suggest that an increase in the intracellular level of fructose 2,6-P2 during gluconeogenesis could effectively overcome the inhibition of PFK by ATP and simulataneously inactivate FBPase. When the level of fructose 2,6-P2 is low, a glycolytic state would be restored, since under these conditions PFK would be inhibited by ATP and FBPase would be active.  相似文献   

11.
Summary Measurement of erythrocyte phosphofructokinase (PFK) activity in Down's syndrome failed to confirm the nearly 50% increase reported by others. An increase of 29% was found, while leukocyte PFK activity was normal. Erythrocyte PFK differs immunochemically from platelet and leukocyte PFK, and the enzyme is probably genetically heterogeneous; therefore, it remains possible that a structural gene for erythrocyte PFK is present on chromosome 21.This work was supported in part by grant FR-05355 (M.M.C.) and grant AM-12588 (R.B.L.) from the National Institutes of Health. Dr. Layzer is the recipient of Career Development Award NB-35310 from the National Institute of Neurological Diseases and Stroke.  相似文献   

12.
The properties of phosphofructokinase (PFK) of cultured and 'aged' carrot-root phloem and Jerusalem artichoke slices were studied. PFK activity was inhibited by ATP, citrate and phosphoenol-pyruvate, and the plots of activity vs. fructose-6-phosphate concentration gave a sigmoidal curve. Sensitivity of PFK to ATP was not changed by ageing.  相似文献   

13.
Human erythrocyte and muscle phosphofructokinase (PFK) were purified completely by improved procedures. SDS-acrylamide gel electrophoresis in a discontinuous buffer system revealed two subunits (R and M) of erythrocyte PFK, the slower one (M) corresponding to the single subunit of muscle PFK. The staining intensity ratio R:M of the two bands of erythrocyte PFK was 2:1 or less. This suggests that native erythrocyte PFK contains multiple isoenzymes with different proportions of R and M, some being lost during purification. Nevertheless, isoelectric focusing showed single peaks of erythrocyte PFK (pI 5.0) and muscle PFK (pI 6.6), perhaps because of aggregation of erythrocyte PFK isoenzymes. Erythrocyte PFK from a patient with muscle PFK deficiency had a pI of 4.6 and could not be precipitated by antiserum against muscle PFK, findings compatible with the putative structure R4.  相似文献   

14.
The phosphofructokinase (PFK) of Bacillus licheniformis was purified about 50–65-fold and examined for a number of enzymatic and physical characteristics. The enzyme is quite unstable under normal assay conditions, but Mg2+, K+, adenosine-5′-diphosphate, phosphoenolpyruvate (PEP), and fructose-6-phosphate (fru-6-P) are fairly effective stabilizing agents. Saturation functions for ATP and fru-6-P were hyperbolic. Several attempts to induce positive cooperative binding of fru-6-P were unsuccessful. However, “sigmoidal” saturation kinetics for fru-6-P could be observed under assay conditions that permitted an irreversible inactivation of the PFK during assay. Several divalent cations could support the catalysis of B. licheniformis PFK and the enzyme was activated by both NH4+ and K+ ions. B. licheniformis PFK is inhibited by citrate, ATP, PEP, Ca2+, and several other metabolic intermediates, but the inhibition caused by citrate and ATP at high fru-6-P concentration and by calcium can be relieved by Mg2+ addition while PEP inhibition is specifically relieved by fru-6-P. There are at least three binding sites for PEP on the PFK molecule. The active form of this PFK has a molecular weight of about 134,000 daltons. In the presence of Mg2+, adenosine-5′-triphosphate (ATP), and PEP, at 0 °C, the PFK molecule is rapidly dissociated to an inactive form with a molecular weight of about 68,000 daltons. Association of these subunits to yield the active form of PFK occurs spontaneously, and rapidly, when the temperature is raised to 30 °C. Ninety percent of the original activity is recovered after activation. Growth of B. licheniformis on several different substrates resulted in minor variations of PFK activity. In a parallel fashion, sporulation involved no irreversible inactivation of PFK and the level of the activity was about the same throughout the life cycle. Control of this enzyme during sporulation could be affected by any or all of the cell constituents found to regulate PFK activity in vitro, but it is considered likely that the most significant in vivo negative effector is PEP, with this inhibition being reversed by fru-6-P.  相似文献   

15.
《Phytochemistry》1986,25(2):345-349
The regulatory properties of PFK. from the tomato are discussed in relation to the dissociation of the oligomeric form of the enzyme. Both the oligomeric and monomeric forms of PFK were inhibited by citrate, malate, PEP, 2-phosphoglycerate, phosphoglycolate and ammonium sulphate. PEP was the most potent inhibitor of PFK activity with 9 and 10 μn PEP causing 50%, inhibition of the oligomeric and monomeric forms of PFK respectively. The inhibition by all these metabolites of the oligomeric form of PFK was sigmoidal while their inhibition of the monomeric form was hyperbolic. The magnitude of inhibition by these metabolites is affected by the levels of Mg2+. The oligomeric form of the enzyme is more resistant to citrate inhibition than the monomeric form. In the presence of citrate or ammonium sulphate, the kinetics of the oligomeric form of PFK with F6P yielded positive cooperativity while in their absence, the kinetics revealed negative cooperative interactions. Phosphoenolpyruvate had no effect on the nature of the kinetics with F6P. ADP is stimulatory to the oligomeric form while it is slightly inhibitory to the monomeric form. The significance of these properties and their relation with the regulation of PFK activity in vivo are discussed.  相似文献   

16.
The in vivo effect of a single dose of the neuropathic compound triorthocresyl-phosphate (TOCP) on phosphofructokinase (PFC, E.C. 2.7.1.11) and its relation with the initiation step (inhibition and aging of neuropathy target esterase, NTE) in the TOCP-induced delayed neuropathy have been studied. Hens were treated with a neurotoxic dose of TOCP (500 mg/kg, p.o.) and with a protective compound (Phenylmethanesulfonyl fluoride, PMSF, 30 mg/kg s.c.) in different combinations: TOCP, TOCP + PMSF, PMSF + TOCP and PMSF. PFK activity was determined in brain and sciatic nerve 1, 3, 7 and 15 days after treatment. PFK activity decreased in sciatic nerve 15 days after dosing with TOCP or TOCP + PMSF. When animals were dosed with the protective agent (PMSF) alone or before administering the neurotoxic compound, PFK activity was unaltered and clinical signs of neuropathy were absent. The data presented here suggest that phosphofructokinase is involved in the pathogenesis of the neuropathy induced by TOCP.  相似文献   

17.
Malaria parasite-infected erythrocytes exhibit enhanced glucose utilisation and 6-phospho-1-fructokinase (PFK) is a key enzyme in glycolysis. Here we present the characterisation of PFK from the human malaria parasite Plasmodium falciparum. Of the two putative PFK genes on chromosome 9 (PfPFK9) and 11 (PfPFK11), only the PfPFK9 gene appeared to possess all the catalytic features appropriate for PFK activity. The deduced PfPFK proteins contain domains homologous to the plant-like pyrophosphate (PPi)-dependent PFK β and α subunits, which are quite different from the human erythrocyte PFK protein. The PfPFK9 gene β and α regions were cloned and expressed as His6- and GST-tagged proteins in Escherichia coli. Complementation of PFK-deficient E. coli and activity analysis of purified recombinant proteins confirmed that PfPFK9β possessed catalytic activity. Monoclonal antibodies against the recombinant β protein confirmed that the PfPFK9 protein has β and α domains fused into a 200 kDa protein, as opposed to the independent subunits found in plants. Despite an overall structural similarity to plant PPi-PFKs, the recombinant protein and the parasite extract exhibited only ATP-dependent enzyme activity, and none with PPi. Unlike host PFK, the Plasmodium PFK was insensitive to fructose-2,6-bisphosphate (F-2,6-bP), phosphoenolpyruvate (PEP) and citrate. A comparison of the deduced PFK proteins from several protozoan PFK genome databases implicates a unique class of ATP-dependent PFK present amongst the apicomplexan protozoans.  相似文献   

18.
An assay procedure was developed that allowed the first reproducible measurement of DNA polymerase activity in all developmental stages of Drosophila melanogaster. Evidence is presented that the same enzymatic species is present in extracts of embryos, pupae, and adults of both sexes and that this activity has many properties similar to vertebrate α-polymerases. Polymerase activity per individual is low in embryos and rises steadily through larval instars, reaches a peak in early pupae, declines through the late pupal period, and remains low in newly eclosed adults of both sexes. A dramatic increase is observed in adult females as mature oocytes are formed. This pattern of enzyme activity is completely coincident with changes in DNA levels during development, and suggests that the Drosophila enzyme, like vertebrate α-polymerases, functions in cellular DNA replication. Two mutagen-sensitive mutants, deficient in both replication on undamaged templates and postreplication repair, were found to have normal levels of this α-polymerase activity. Our results suggest that a single enzymatic species of α-polymerase holoenzyme exists in Drosophila and is common to all developmental stages of this organism.  相似文献   

19.
1. The regulatory properties of phosphofructokinase (PFK) has been investigated in two cellular population representatives of trout haemopoiesis; haemopoietic cells (capable of replication and differentiation) and erythrocytes (highly specialized cells). 2. The intracellular levels of substrates and effectors have been quantified and their effect on PFK activity determined. 3. Fructose 1,6-bisphosphate anc cyclic AMP show a higher activation of the PFK from haemopoietic cells than the enzyme from erythrocytes. 4. AMP and phosphoenolpyruvate act as activators of the haemopoietic cell PFK while for erythrocytes PFK, AMP is an inhibitor and phosphoenolpyruvate does not display any effect. 5. Citrate inhibits PFK activity from haemopoietic cells but was not assayed in erythrocytes since it was not detected in these cells. 6. The differences in PFK regulation in both cellular populations may be attributed to the intracellular levels of the effectors and/or different isoenzymatic patterns. 7. The different regulation of PFK together with the higher enzymatic activity of PFK and pyruvate kinase from haemopoietic cells are related to the higher glycolytic flux that exhibits the haemopoietic cells. 8. The results shown in this investigation allow us to conclude that PFK has a specific role depending on the energetic requirements of the cellular population in which the enzyme is present. 9. The requirements are related to the physiological function of each type of cell.  相似文献   

20.
Total 6-phosphofructo-1-kinase (PFK) activity, amounts of each type of PFK subunit, and levels of fructose-2,6-P2 in the cerebral cortex, midbrain, pons-medulla, and cerebellum of 3, 12, and 25 month rats were measured. Further, the role of fructose-2,6-P2 in the regulation of brain PFK activity was examined. A positive correlation was found to exist between the reported losses of glucose utilization as measured by 2-deoxy-D-glucose uptake and PFK activity in each region. That is, both parameters decreased to their lowest level by 12 months of age and remained decreased and fairly constant thereafter. Fructose-2,6-P2 levels did not appear to directly correlate with regional changes in glucose utilization. Also, region-specific and age-related alterations of the PFK subunits were found although these changes apparently did not correlate with decreased glucose utilization. Brain PFK is apparently saturated with fructose-2,6-P2 due to the high endogenous levels, and it contains a large proportion of the C-type subunit which dampens catalytic efficiency. Consequently, brain PFK could exist in a conformational state such that it can readily consume fructose-6-P rather than in an inhibited state requiring activation. This may explain, in part, the ability of brain to efficiently but conservatively utilize available glucose in energy production.Abbreviations fructose-2,6-P2 D-fructose 2,6-bisphosphate - fructose-6-P D-fructose 6-phosphate - PAGE Polyacrylamide Gel Electrophoresis - PFK 6-phosphofructo-1-kinase - PPi-PFK Pyrophosphate-dependent Phosphofructokinase, ribose-1,5-P2, ribose-1,5-bisphosphate - SDS Sodium Dodecyl Sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号