首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The evidence appears compelling that the microenvironment, and associated biological cellular and molecular factors, may contribute to the progression of a variety of tumors. The effects of the microenvironment may directly influence the plasticity of T cell lineages, which was recently discussed (O''Shea & Paul, 2010 [4]). To review the putative role of the microenvironment in modulating the commitment of tumor immune surveillance, we use the model of oral premalignant lesions.  相似文献   

4.
The evidence appears compelling that the microenvironment, and associated biological cellular and molecular factors, may contribute to the progression of a variety of tumors. The effects of the microenvironment may directly influence the plasticity of T cell lineages, which was recently discussed (O'Shea & Paul, 2010 [4]). To review the putative role of the microenvironment in modulating the commitment of tumor immune surveillance, we use the model of oral premalignant lesions.  相似文献   

5.

Cancer has the ability to escape the immune system using different molecular actors. Adenosine is known to be involved in mechanisms which control inflammatory reactions and prevent excessive immune response. This purine nucleoside can be translocated from the cell or produced in the extracellular space by 5′-ectonucleotidases. Once bound to its receptors on the surface of immune effector cells, adenosine activates various molecular pathways, which lead to functional inhibition of the cell or its death. Some tumors are infiltrated by the different cells of immune system but are able to use adenosine as an immunosuppressive molecule and thus inhibit immune anticancer response. This mechanism is well described on adaptive cells, but much less on innate cells. This review outlines major effects of adenosine on innate immune cells, its consequences on cancer progression, and possible ways to block the adenosine-dependent immunosuppressive effect.

  相似文献   

6.
7.
溶瘤病毒是一类天然的或经改造后获得具有靶向杀伤癌细胞能力的病毒,除了能特异性杀伤肿瘤细胞外,经改造后的溶瘤病毒对肿瘤微环境的调控作用也会影响其最终疗效.通过调控肿瘤微环境中肿瘤细胞抗原的表达、免疫抑制状态、肿瘤相关成纤维细胞及肿瘤血管新生等,溶瘤病毒为肿瘤的治疗提供了更为系统的治疗策略;联合免疫检查点抑制剂的使用能使两者获得协同和互补的功效,进一步提升了肿瘤全面和有效的治疗.本文将对溶瘤病毒对肿瘤微环境调控作用及联合治疗的研究进展进行综述.  相似文献   

8.
The acquired ability to induce the formation of a functional vasculature is a hallmark of cancer. Blood vessels in tumors are formed through various mechanisms, among the most important in cancer biology, angiogenesis, and vasculogenic mimicry have been described. Leptin is one of the main adipokines secreted by adipocytes in normal breast tissue and the tumor microenvironment. Here, we provide information on the relationship between leptin and the development of angiogenesis and vasculogenic mimicry in different types of cancer. Here, we report that leptin activates different pathways such as JAK-STAT3, MAPK/ERK, PKC, JNK, p38, and PI3K-Akt to induce the expression of various angiogenic factors and vasculogenic mimicry. In vivo models, leptin induces blood vessel formation through the PI3K-Akt-mTOR pathway. Interestingly, the relationship between leptin and vasculogenic mimicry was more significant in breast cancer. The information obtained suggests that leptin could be playing an essential role in tumor survival and metastasis through the induction of vascular mechanisms such as angiogenesis and vasculogenic mimicry; thus, leptin-induced pathways could be suggested as a promising therapeutic target.  相似文献   

9.
《Genomics》2020,112(5):3117-3134
In this study, we devoted to investigate immune-related genes and tumor microenvironment (TME) in EC based on The Cancer Genome Atlas (TCGA) database. In total 799 up-regulated and 139 down-regulated immune-related and differentially expressed genes in EC were investigated for functional annotations and prognosis. By a conjoint Cox regression analysis, we built two risk models for OS and DFS, as well as the consistent nomograms. Immune-related pathways were revealed mostly enriched in the low-risk group. By further analyzing TME based on the risk signatures, the higher immune cell infiltration and activation, lower tumor purity and higher tumor mutational burden were found in low-risk group, which presented a better prognosis. Both the expression and immunophenoscore of immune checkpoints PD-1, CTLA4, PD-L1 and PD-L2 increased significantly in low-risk group. These findings may provide new ideas for novel biomarkers and immunotherapy targets in EC.  相似文献   

10.
Although tumor progression involves processes such as tissue invasion that can activate inflammatory responses, the immune system largely ignores or tolerates disseminated cancers. The mechanisms that block initiation of immune responses during cancer development are poorly understood. We report here that constitutive activation of Stat-3, a common oncogenic signaling pathway, suppresses tumor expression of proinflammatory mediators. Blocking Stat-3 in tumor cells increases expression of proinflammatory cytokines and chemokines that activate innate immunity and dendritic cells, leading to tumor-specific T-cell responses. In addition, constitutive Stat-3 activity induces production of pleiotropic factors that inhibit dendritic cell functional maturation. Tumor-derived factors inhibit dendritic cell maturation through Stat-3 activation in progenitor cells. Thus, inhibition of antitumor immunity involves a cascade of Stat-3 activation propagating from tumor to dendritic cells. We propose that tumor Stat-3 activity can mediate immune evasion by blocking both the production and sensing of inflammatory signals by multiple components of the immune system.  相似文献   

11.
We have shown that certain murine tumors grow more slowly and spread less readily in immune deficient animals. We have also demonstrated that immunologic factors explain certain aspects of this difference. In the work presented we demonstrate that a subpopulation of splenocytes produce a factor(s) that enhances tumor cell proliferation in vitro. We also describe an in vitro model to determine the level of tumor stimulatory activity. We found that the tumor cell growth-enhancing activity (TEA) is heat stable but sensitive to trypsin digestion, low pH and beta-mercaptoethanol. TEA production is found to be insensitive to mitogen stimulation such as concanavalin A, lipopolysaccharide, and phytohemagglutinin. Among the known growth factors and interleukins we have tested (interleukin 1-7, basic FGF, EGF, TGF-beta PDGF, GM-CSF, and MCSF), none appear to account for TEA activity.  相似文献   

12.
Wen Y  Wang H  Wu H  Yang F  Tripp RA  Hogan RJ  Fu ZF 《Journal of virology》2011,85(4):1634-1644
Our previous studies indicated that recruitment and/or activation of dendritic cells (DCs) is important in enhancing the protective immune responses against rabies virus (RABV) (L. Zhao, H. Toriumi, H. Wang, Y. Kuang, X. Guo, K. Morimoto, and Z. F. Fu, J. Virol. 84:9642-9648). To address the importance of DC activation for RABV vaccine efficacy, the genes for several DC recruitment and/or activation molecules, e.g., granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage-derived chemokine (MDC), and macrophage inflammatory protein 1α (MIP-1α), were individually cloned into RABV. The ability of these recombinant viruses to activate DCs was determined in vitro and in vivo. Infection of mouse bone marrow-derived DCs with each of the recombinant viruses resulted in DC activation, as shown by increased surface expression of CD11c and CD86 as well as an increased level of alpha interferon (IFN-α) production compared to levels observed after infection with the parent virus. Intramuscular infection of mice with each of the viruses recruited and/or activated more DCs and B cells in the periphery than infection with the parent virus, leading to the production of higher levels of virus-neutralizing antibodies. Furthermore, a single immunization with recombinant RABV expressing GM-CSF or MDC protected significantly more mice against intracerebral challenge with virulent RABV than did immunization with the parental virus. Yet, these viruses did not show more virulence than the parent virus, since direct intracerebral inoculation with each virus at up to 1 × 10(7) fluorescent focus units each did not induce any overt clinic symptom, such as abnormal behavior, or any neurological signs. Together, these data indicate that recombinant RABVs expressing these molecules activate/recruit DCs and enhance protective immune responses.  相似文献   

13.
Since the "seed and soil" hypothesis was proposed, the biological functions of the tumor microenvironment (TME), especially its stromal components, have received increasing attention. Cancer-associated fibroblasts (CAFs) are the major components of the stromal region, providing material support for tumor cell proliferation, migration, and invasion. Furthermore, CAFs are important mediators of suppressing immune responses by attracting the accumulation of immunosuppressive cells through cytokine/chemokine secretion. In this review, we summarized the major cytokines, chemokines and metabolites, including transforming growth factor-β (TGF-β), interleukin-6 (IL-6), C-X-C chemokine ligand (CXCL)12, C–C chemokine ligand (CCL) 2, prostaglandin E2 (PGE2), and other factors, by which CAFs suppress the immune systems in a variety of cancers. More importantly, we highlight potential therapeutic strategies to alleviate the immunosuppression produced by CAFs, thereby inhibiting tumor progression.  相似文献   

14.
Tumor development in bone is often associated with fractures, bone loss and bone pain, and improvement is still needed in therapeutic approaches. Bone tumors are related to the existence of a vicious cycle between bone resorption and tumor proliferation in which the molecular triad osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) plays a pivotal role. RANKL, a member of the TNF superfamily, is one of the main inducers of bone resorption. Its soluble receptor OPG represents a promising therapeutic candidate as it prevents bone lesions and inhibits associated tumor growth. However, its therapeutic use in bone tumors remains controversial due to its ability to bind and inhibit another member of the TNF superfamily, TNF related apoptosis inducing ligand (TRAIL), which is a potent inducer of tumor cell apoptosis. Through its heparin binding domain, OPG is also able to bind proteoglycans present in the bone matrix. This paper is an overview of the involvement of the micro-environment, as represented by the balance of RANKL/TRAIL and the presence of proteoglycans in the regulation of OPG biological activity in bone tumors.  相似文献   

15.
16.
Mx proteins are interferon-induced members of the dynamin superfamily of large guanosine triphosphatases. These proteins have attracted much attention because some display antiviral activity against pathogenic RNA viruses, such as members of the orthomyxoviridae, bunyaviridae, and rhabdoviridae families. Among the diverse mammalian Mx proteins examined so far, we have recently demonstrated in vitro that the Bos taurus isoform 1 (boMx1) is endowed with exceptional anti-rabies-virus activity. This finding has prompted us to seek an appropriate in vivo model for confirming and evaluating gene therapy strategies. Using a BAC transgene, we have generated transgenic mouse lines expressing the antiviral boMx1 protein and boMx2 proteins under the control of their natural promoter and short- and long-range regulatory elements. Expressed boMx1 and boMx2 are correctly assembled, as deduced from mRNA sequencing and western blotting. Poly-I/C-subordinated expression of boMx1 was detected in various organs by immunohistochemistry, and transgenic lines were readily classified as high- or low-expression lines on the basis of tissue boMx1 concentrations measured by ELISA. Poly-I/C-induced Madin-Darby bovine kidney cells, bovine turbinate cells, and cultured cells from high-expression line of transgenic mice were found to contain about the same concentration of boMx1, suggesting that this protein is produced at near-physiological levels. Furthermore, insertion of the bovine Mx system rendered transgenic mice resistant to vesicular-stomatitis-virus-associated morbidity and mortality, and embryonic fibroblasts derived from high-expression transgenic mice were far less permissive to the virus. These results demonstrate that the Bos taurus Mx system is a powerful anti-VSV agent in vivo and suggest that the transgenic mouse lines generated here constitute a good model for studying in vivo the various antiviral functions—known and yet to be discovered—exerted by bovine Mx proteins, with priority emphasis on the antirabic function of boMx1. M.-M. Garigliany and K. Cloquette have contributed equally to the study.  相似文献   

17.
Accumulating evidence indicates that a dynamic cross-talk between tumors and the immune system can regulate tumor growth and metastasis. Increased understanding of the biochemical nature of tumor antigens and the molecular mechanisms responsible for innate and adaptive immune cell activation has revolutionized the fields of tumor immunology and immunotherapy. Both the protective effects of the immune system against tumor cells (immunosurveillance) and the evasion of tumor cells from immune attack (tumor-immune escape) have led to the concept of cancer immunoediting, a proposal which infers that a bidirectional interaction between tumor and inflammatory/regulatory cells is ultimately responsible for orchestrating the immunosuppressive network at the tumor site. In this context, a major challenge is the potentiation or redirection of tumor antigen-specific immune responses. The success in reaching this goal is highly dependent on an improved understanding of the interactions and mechanisms operating during the different phases of the cancer immunoediting process. In this review, we discuss the multiple defense and counterattack strategies that tumors have devised in order to evade immune attack and to thwart the effectiveness of several immunotherapeutic approaches. Diego O. Croci, Mariano F. Zacarías Fluck contributed equally to this work. Gabriel A. Rabinovich, O. Graciela Scharovsky contributed equally to this work and should be considered as senior authors.  相似文献   

18.
The tumor microenvironment consists of stromal cells, extracellular matrix (ECM), and signaling molecules that communicate with cancer cells. As tumors grow and develop, the tumor microenvironment changes. In addition, the tumor microenvironment is not only influenced by signals from tumor cells, but also stromal components contribute to tumor progression and metastasis by affecting cancer cell function. One of the mechanisms that cancer cells use to invade and metastasize is mediated by actin-rich, proteolytic structures called invadopodia. Here, we discuss how signals from the tumor environment, including growth factors, hypoxia, pH, metabolism, and stromal cell interactions, affect the formation and function of invadopodia to regulate cancer cell invasion and metastasis. Understanding how the tumor microenvironment affects invadopodia biology could aid in the development of effective therapeutics to target cancer cell invasion and metastasis.  相似文献   

19.
The tumor microenvironment consists of stromal cells, extracellular matrix (ECM), and signaling molecules that communicate with cancer cells. As tumors grow and develop, the tumor microenvironment changes. In addition, the tumor microenvironment is not only influenced by signals from tumor cells, but also stromal components contribute to tumor progression and metastasis by affecting cancer cell function. One of the mechanisms that cancer cells use to invade and metastasize is mediated by actin-rich, proteolytic structures called invadopodia. Here, we discuss how signals from the tumor environment, including growth factors, hypoxia, pH, metabolism, and stromal cell interactions, affect the formation and function of invadopodia to regulate cancer cell invasion and metastasis. Understanding how the tumor microenvironment affects invadopodia biology could aid in the development of effective therapeutics to target cancer cell invasion and metastasis.  相似文献   

20.
The murine B cell tumor line 2 PK-3 secretes T cell growth factor activity after incubation for 6 to 48 hr with a factor present in heterologous immune serum. T cell growth factor derived from 2 PK-3 was compared with IL 2 produced by the Con A-induced T lymphoma cell line EL-4 G12. These studies indicated that T cell growth factor activities derived from both cell lines were similar with respect to m.w., pI values, and the ability to support growth of two IL 2-dependent T cell clones. Three preparations of immune sera were found to be active in the induction of IL 2 activity from 2 PK-3 cells, including rabbit anti-mouse brain, rabbit anti-complete Freund's adjuvant, and goat anti-mouse Ig. None of these preparations, however, induced IL 2 from EL-4 G12 cells. It was also observed that LPS synergized with immune serum to produce enhanced activity. Normal sera prepared from unimmunized animals were not active in the induction of IL 2 activity. Fractionation of immune serum on protein A Sepharose suggested that the IL 2-inducing agent is not IgG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号