首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid sequence of a mouse mucosal mast cell protease   总被引:11,自引:0,他引:11  
The amino acid sequence has been determined of a mouse mucosal mast cell protease isolated from the small intestines of mice infected with Trichinella spiralis. The active protease contains 226 residues. Those corresponding to the catalytic triad of the active site of mammalian serine proteases (His-57, Asp-102, and Ser-195 in chymotrypsin) occur in identical positions. A computer search for homology indicates 74.3% and 74.1% sequence identity of the mouse mast cell protease compared to those of rat mast cell proteases I and II (RMCP I and II), respectively. The six half-cystine residues in the mouse mast cell protease are located in the same positions as in the rat mast cell proteases, cathepsin G, and the lymphocyte proteases, suggesting that they all have identical disulfide bond arrangements. At physiological pH, the mouse and rat mucosal mast cell proteases have net charges of +3 and +4, respectively, as compared to +18 for the protease (RMCP I) from rat connective tissue mast cells. This observation is consistent with the difference in solubility between the mucosal and connective tissue mast cell proteases when the enzymes are extracted from their granules under physiological conditions.  相似文献   

2.
3.
Mast cell tryptase is a secretory granule associated serine protease with trypsin-like specificity released extracellularly during mast cell degranulation. To determine the full primary structure of the catalytic domain and precursor forms of tryptase and to gain insight into its mode of activation, we cloned cDNAs coding for the complete amino acid sequence of dog mast cell tryptase and a second, possibly related, serine protease. Using RNA from dog mastocytoma cells, we constructed a cDNA library in lambda gt 10. Screening of the library with an oligonucleotide probe based on the N-terminal sequence of tryptase purified from the same cell source allowed us to isolate and sequence overlapping clones coding for dog mast cell tryptase. The tryptase sequence includes the essential residues of the catalytic triad and an aspartic acid at the base of the putative substrate binding pocket that confers P1 Arg and Lys specificity on tryptic serine proteases. The apparent N-terminal signal/activation peptide terminates in a glycine. A glycine in this position has not been observed previously in serine proteases and suggests a novel mode of activation. Additional screening of the library with a trypsinogen cDNA led to the isolation and sequencing of a full-length clone apparently coding for the complete sequence of a second tryptic serine protease (DMP) which is only 53.4% identical with the dog tryptase sequence but which contains an apparent signal/activation peptide also terminating in a glycine. Thus, the proteases encoded by these cloned cDNAs may share a common mode of activation from N-terminally extended precursors.  相似文献   

4.
A novel serine protease, named as scolonase, was purified and characterized from the tissue of the Korean centipede, Scolopendra subspinipes mutilans. Purified scolonase showed an apparent molecular weight of 25 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and an isoelectric point of 4.8 on isoelectric focusing gel. Scolonase was able to preferentially hydrolyze arginine over lysine at the cleavage site among the several synthetic peptide substrates. Scolonase has also a potent fibrinolytic activity by converting human Glu-plasminogen to activated plasmin due to the specific cleavage of the molecule at the peptide bond Arg(561)-Val(562). The enzyme activity of scolonase was completely inhibited by phenylmethanesulfonyl fluoride and difluorophosphate. The cDNA encoding scolonase was cloned from the cDNA library of the centipede constructed with oligonucleotide probe, which was designed on the basis of the N-terminal amino acid sequence of scolonase. The deduced complete amino acid sequence of scolonase demonstrated that the protein is composed of 277 amino acids including 33 amino acids as a leader sequence, and that it has significant sequence homology with other serine proteases.  相似文献   

5.
cDNAs were isolated that encode mouse mast cell protease-5 (MMCP-5), an approximately 30,000 Mr serine protease stored in the secretory granules of serosal mast cells (SMC) and Kirsten sarcoma virus-immortalized mast cells. Based on the deduced amino acid sequences of these cDNAs, MMCP-5 is synthesized as a 247-amino acid preproenzyme composed of a novel 19-residue hydrophobic signal peptide, a Gly-Glu activation peptide not present in other mast cell chymases, and a 226-amino acid protein that represents the mature enzyme. MMCP-5 possesses a unique Asn residue in the substrate binding cleft at residue 176 and is highly basically charged. The MMCP-5 gene was isolated, sequenced, and found to belong to a distinct subset of chymase genes. Allelic variations of the MMCP-5 gene were also detected. MMCP-5 is expressed in bone marrow-derived mast cells (BMMC), Kirsten sarcoma virus-immortalized mast cells, and SMC, but not in gastrointestinal mucosal mast cells of helminth-infected mice. The abundant levels of MMCP-5 mRNA in immature BMMC indicate that this chymase is expressed relatively early during the differentiation of mast cells. MMCP-5 is the first chymase to be molecularly cloned from progenitor mast cells and is also the first chymase shown to be expressed preferentially in the SMC subclass.  相似文献   

6.
7.
《Process Biochemistry》2010,45(5):724-730
A protease with a molecular mass of 28 kDa, designated as hmsp, was isolated from fresh fruiting bodies of the edible mushroom Hypsizigus marmoreus. The purification protocol entailed ion exchange chromatography on DEAE-cellulose, CM-cellulose, and FPLC-gel filtration on Superdex 75. The protease was unadsorbed on DEAE-cellulose but adsorbed on CM-cellulose. hmsp was thermolabile, and exhibited a temperature optimum at 50 °C and a pH optimum at pH 7.5. The activity of the protease was adversely affected by PMSF, EGTA and aprotinin, indicating that it is a serine protease. Based on the N-terminal sequence, the cDNA of hmsp was cloned by using RACE combined with the TAIL-PCR method. The deduced protease sequence contained a signal peptide with 19 amino acids, a pro-region with 82 amino acids, and a mature protease with 285 amino acids and a molecular mass of 28.07 kDa. It possessed the three active sites characteristic of the subtilisin family (S8A). hmsp demonstrated 63%, 57% and 44% identity in amino acid sequence respectively to Absp1, Absp2, and Gf-spr1, which are serine proteases from Agaricus bisporus and Grifola frondosa.  相似文献   

8.
A simple and rapid strategy for molecular cloning using a gel-free and antibiotic selection method is described which allows for the complete elimination of DNA extraction by gel electrophoresis, and thus has several advantages over gel-based cloning methods, including: (i) a cloning efficiency that is approximately 10-times higher due to the prevention of ethidium bromide ultraviolet-induced DNA damage and contamination with ligase inhibitors; (ii) the amount of plasmid DNA required is approximately five times less; and (iii) the cloning time is several hours less. Once the target gene, such as mouse HtrA2 serine protease, was cloned into the pEGFP-N3 plasmid, the integrity of the kanamycin-resistant molecular clone encoding the GFP fusion protein was verified by immunoblot and immunofluorescence assays. In addition, the integrity of the ampicillin-resistant molecular clone was directly evaluated by analyzing the expression and affinity purification of the GST fusion protein and by measuring its enzymatic activity. Therefore, this method is suitable for the routine construction of a plasmid expressing the gene of interest, and the usefulness of this strategy can be demonstrated by monitoring the expression of the target gene in E. coli and mammalian cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. G-Y Kim, M-K Nam, and S-S Kim contributed equally to this work.  相似文献   

9.
Serine proteases are important granule constituents in several of the major hematopoietic cell lineages. We present here the nucleotide sequence of the gene encoding mouse mast cell protease 8 (mMCP-8). mMCP-8 was initially isolated as a cDNA from a mouse mast cell line, but has recently been found to be expressed primarily by mouse basophils. mMCP-8 and its rat homologues, rMCP-8, -9, and -10, form a new group of mast cell/basophil proteases, which are more closely related to the T-cell granzymes and neutrophil cathepsin G than to the mast cell tryptases and chymases. A dot matrix comparison of the mMCP-8 gene with other closely related hematopoietic serine protease genes shows detectable homology only in the exonic regions of the genes. No indication for conservation in the promoter region or introns was observed. This latter finding indicates that the upstream regulatory region has evolved at a relatively high rate. However, despite the low degree of direct sequence conservation, no major differences in the sizes of introns or exons were observed between mMCP-8 and genes for the closest related hematopoietic serine proteases, the mouse T-cell granzymes and cathepsin G, indicating that after evolutionary separation from the T-cell granzymes and cathepsin G, the majority of mutations primarily involved single base pair substitutions or short insertions or deletions.  相似文献   

10.
We have purified a 30-kDa serine protease (designated RNK-Met-1) from the granules of the rat large granular lymphocyte leukemia cell line (RNK-16) that hydrolytically cleaves model peptide substrates after methionine, leucine, and norleucine (Met-ase activity). Utilizing molecular sieve chromatography, heparin-agarose, chromatography, and reverse-phase high pressure liquid chromatography, RNK-Met-1 was purified to homogeneity and 25 NH2-terminal amino acids were sequenced. By using the polymerase chain reaction, oligonucleotide primers derived from amino acids at position 14-25 and from a downstream active site conserved in other serine protease genes were used to generate a 534-base pair cDNA clone encoding a novel serine protease from RNK-16 mRNA. This cDNA clone was used to isolate a full-length 867-base pair RNK-Met-1 cDNA from an RNK-16 lambda-gt11 library. The open reading frame predicts a mature protein of 238 amino acids with two potential sites for N-linked glycosylation. The cDNA also encodes a leader peptide of at least 20 amino acids. The characteristic Ile-Ile-Gly-Gly amino acids of the NH2 terminus and the His, Asp, and Ser residues that form the catalytic triad of serine proteases were both conserved. The amino acid sequence has less than 45% identity with any other member of the serine protease family, indicating that RNK-Met-1 is distinct and may itself represent a new subfamily of serine proteases. Northern blot analysis of total cellular RNA detected a single 0.9-kilobase mRNA in the in vitro and in vivo variants of RNK-16 and in spleen-derived plastic-adherent rat lymphokine-activated killer cells. RNK-Met-1 mRNA was not detectable in freshly isolated rat splenocytes, thymocytes, brain, colon, and liver or activated nonadherent rat splenocytes and thymocytes. These data indicate that RNK-Met-1 is a serine protease with unique activity that is expressed in the granules of large granular lymphocytes.  相似文献   

11.
Dog mast cell chymase: molecular cloning and characterization   总被引:5,自引:0,他引:5  
We cloned and characterized a cDNA coding for the complete amino acid sequence of dog mast cell chymase. The cDNA was identified by screening a dog mastocytoma cDNA library with an oligonucleotide probe based on the amino acid sequence of a fragment of dog mastocytoma chymase. The deduced amino acid sequence reveals a putative 21-residue prepropeptide followed by a catalytic domain of 228 residues. The primary structure of the preproenzyme shares features with rat mucosal mast cell chymase (RMCP II), several lymphocyte-associated proteases, and neutrophil cathepsin G. The common characteristics include an apparent activation peptide terminating in glutamic acid, strict conservation of an octapeptide (residues 9-16) in the N-terminal portion of the catalytic domain, and the presence of only six cysteines available for intramolecular disulfide bond formation. However, dog chymase differs in being modified by N-glycosylation. Although the dog chymase catalytic domain exhibits a similar level of sequence identity when compared with both RMCP II and the rat connective tissue mast cell chymase RMCP I (58% and 61%, respectively), the dog enzyme most closely resembles RMCP I in its high predicted net charge (+16) and in the presence of serine at the base of its putative primary substrate binding pocket. The dog chymase differs strikingly from dog mast cell tryptase in the preprosequence and in the structure of the catalytic domain. Therefore, chymase appears not to be closely related to tryptase and may not share a mechanism of activation, even though both enzymes are packaged and released together.  相似文献   

12.
Mast cell carboxypeptidase A has been isolated from the secretory granules of mouse peritoneal connective tissue mast cells (CTMC) and from a mouse Kirsten sarcoma virus-immortalized mast cell line (KiSV-MC), and a cDNA that encodes this exopeptidase has been cloned from a KiSV-MC-derived cDNA library. KiSV-MC-derived mast cell carboxypeptidase A was purified with a potato-derived carboxypeptidase-inhibitor affinity column and was found by analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be a Mr 36,000 protein. Secretory granule proteins from KiSV-MC and from mouse peritoneal CTMC were then resolved by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transblotted to polyvinylidine difluoride membranes. Identical aminoterminal amino acid sequences were obtained for the prominent Mr 36,000 protein present in the granules of both cell types. Based on the amino-terminal sequence, an oligonucleotide probe was synthesized and used to isolate a 1,470-base pair cDNA that encodes this mouse exopeptidase. The deduced amino acid sequence revealed that, after cleavage of a 15-amino acid hydrophobic signal peptide and a 94-amino acid activation peptide from a 417-amino acid preproenzyme, the mature mast cell carboxypeptidase A protein core has a predicted Mr of 35,780 and a high positive charge [Lys + Arg) - (Asp + Glu) = 17) at neutral pH. Although critical zinc-binding amino acids (His67, Glu70, His195), substrate-binding amino acids (Arg69, Asn142, Arg143, Tyr197, Asp255, Phe278), and cysteine residues that participate in intrachain disulfide bonds (Cys64-Cys77, Cys136-Cys159) of pancreatic carboxypeptidases were also present in mast cell carboxypeptidase A, the overall amino acid sequence identities for mouse mast cell carboxypeptidase A relative to rat pancreatic carboxypeptidases A1, A2, and B were only 43, 41, and 53%, respectively. RNA and DNA blot analyses revealed that mouse peritoneal CTMC, KiSV-MC, and bone marrow-derived mast cells all express a prominent 1.5-kilobase mast cell carboxypeptidase A mRNA which is transcribed from a single gene. We conclude that mouse mast cell carboxypeptidase A is a prominent secretory granule enzyme of mast cells of the CTMC subclass and represents a novel addition to the carboxypeptidase gene family.  相似文献   

13.
Complement factor D, a novel serine protease.   总被引:10,自引:2,他引:8       下载免费PDF全文
Factor D is unique among serine proteases in that it requires neither enzymatic cleavage for expression of proteolytic activity nor inactivation by a serpin for its control. Regulation of factor D activity is instead attained by a novel mechanism that depends on reversible conformational changes for expression and control of catalytic activity. These conformational changes are believed to be induced by the single natural substrate, C3bB, and to result in realignment of the catalytic triad, the specificity pocket, and the nonspecific substrate binding site, all of which have atypical conformations. Mutational studies have defined structural determinants responsible for these unique structural features of factor D and for the resultant low reactivity with synthetic esters.  相似文献   

14.
15.
Myofibrillar proteins, like all other intracellular proteins, are in a dynamic state of continual degradation and resynthesis. The proteolytic system responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. A proteolytic activity associated to myofibrils was found in mouse skeletal muscle, as show electrophoretic patterns, and denominated by us, as protease M. During incubation of whole myofibrils at 37 degrees C, myosin heavy chain, alpha actinin, actin and troponin T suffered degradation. These effects were inhibited selectively by serine protease inhibitors (soybean trypsin inhibitor, di-isopropyl phosphofluoridate, phenylmethanesulfonyl fluoride). Using myofibrils as protease M source, azocaseinolytic activity was also detected. Endogenous inhibitor and various compounds effects on protease M activity were also quantified by trichloroacetic acid soluble products formation, using radiolabeled myofibrils. An endogenous trypsin inhibitor isolated from the muscle cytoplasmic fraction could inhibit protease M activity on myofibrillar proteins and on azocasein. While K(+) increased protease M activity, the presence of Ca(2+) did not show any effect. Data presented in this study suggest that reported protease M may be implicated in myofibrillar degradation in vivo and isolated endogenous inhibitor may provide a mechanism to control its action in mouse skeletal muscle.  相似文献   

16.
Arenicola cristata, a marine annelid, is a wellknown and prized traditional Chinese medicine. However, the serine protease gene of A. cristata has not been cloned yet. In this study, a novel protease ofA. cristata was cloned, sequenced, and expressed in Escherichia coli, and the functions of this recombinant protease were also investigated. The whole complementary DNA (cDNA) of this novel protease was of 980 bp in length and consisted of an open reading frame of 861 bp encoding 286 aa. Sequence analysis of the deduced amino acid sequence revealed that the protease belongs to the serine protease family. The active enzyme of the pro posed A. cristata protease is composed of a signal peptide, a propeptide, and a mature polypeptide. The molecular weight of the recombinant mature protein was 26 kDa after overexpression in E. coli. The recombinant pro tein significantly inhibited cell growth and induced cell apoptosis of esophageal squamous cell carcinoma (ESCC) in vitro, and reduced tumorigenicity in vivo. Furthermore, administration of the recombinant protein led to the activa tion of caspase9 as well as downregulation of Mcl1 and Bcl2. Taken together, our findings indicated that the recom binant serine protease ofA. cristata could inhibit ESCC cell growth by mitochondrial apoptotic pathway and might act as a potential pharmacological agent for ESCC therapy.  相似文献   

17.
We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression.  相似文献   

18.
Mouse mast cell protease 11 (mMCP-11) is the most recently identified member of the mouse mast cell tryptase family. This tryptase is preferentially produced by basophils in contrast to other members that are expressed by mast cells but not basophils. Although blood-circulating basophils have long been considered as minor and redundant relatives of tissue-resident mast cells, recent studies illustrated that basophils and mast cells play distinct roles in vivo. To explore the in vivo role of basophil-derived mMCP-11, here we prepared recombinant mMCP-11 and its protease-dead mutant. Subcutaneous injection of the wild-type mMCP-11 but not the mutant induced edematous skin swelling with increased microvascular permeability in a dose-dependent manner. No apparent infiltration of proinflammatory cells including neutrophils and eosinophils was detected in the skin lesions. The cutaneous swelling was abolished by the pretreatment of mice with indomethacin, a cyclooxygenase inhibitor, suggesting the major contribution of prostaglandins to the microvascular leakage. Of note, the cutaneous swelling was elicited even in mast cell-deficient mice, indicating that mast cells are dispensable for the mMCP-11-induced cutaneous swelling. Thus, basophil-derived mMCP-11 can induce microvascular leakage via prostaglandins in a mast cell-independent manner, and may contribute to the development of basophil-mediated inflammatory responses.  相似文献   

19.
1. Diisopropylphosphofluoridate (Dip-F) and phenylmethanesulphonylfluoride (Pms-F) are inhibitors of "serine" proteinases, and L-trans-epoxysuccinylleucylamido-(4-guanido)-butane (E-64) is an inhibitor of "thiol" proteinases. The effects of these inhibitors on sheep mast cell proteinase (SMCP) were examined. 2. Enzyme activity was completely inhibited by 5 mM Dip-F following a 4-hr preincubation period at either 4 degrees C or 30 degrees C but was unusually resistant to the action of 1 mM Dip-F. 3. SMCP activity was inhibited by 1 mM Pms-F at both 4 degrees C and 30 degrees C. Inhibition was reversed by dithiothreitol (DTT), but this effect was virtually eliminated following preincubation with Pms-F at 30 degrees C for 12 hr. 4. SMCP activity was unaffected by E-64. 5. These properties are consistent with the classification of SMCP as a "serine" endopeptidase (EC 3.4.21).  相似文献   

20.
Mitogenesis, cell differentiation and immune-inflammatory responses are regulated by the coordinated assembly of proteases with specific cellular receptors. We have investigated the possibility that immune effector cells may express a high-affinity protease receptor. To address this hypothesis, we have generated mAb to factor V and its activated form Va, a circulating plasma protein that binds the serine protease of the coagulation cascade, factor Xa. Further, by flow microfluorimetry screening, we have isolated a panel of these mAb that recognize a surface molecule expressed on transformed monocytic cells. We now show that these mAb bind to blood monocytes, to CD3- CD16+ CD56+ NK cells, and with considerable heterogeneity, to neutrophils. A small subset of CD3+ cells (5 to 10%) was also identified by these probes and further phenotypically characterized by two-color flow microfluorimetry as predominantly coexpressing CD2, CD4 or CD8, CD57, CD11b, and alpha/beta TCR. This subset of CD3+ cells was expanded in vitro by both lectin- or Ag-specific stimulation. In addition, long term alloreactive stimulation resulted in approximately 8- to 10-fold increased expression of the molecule recognized by these mAb. Functional analyses were performed on a selected T cell clonal derivative of the transformed cell line HuT 78. These cells bound 125I-factor Xa in a specific reaction saturated at 194,000 +/- 26,000 molecules/cell with a Kd approximately 10 to 20 nM and inhibited by the mAb panel described above. These data suggest that immune effector cells express a dynamically regulated protease receptor that is immunologically related to the plasma coagulation protein factor V and its activated form Va. We propose the term effector cell protease receptor-1 to tentatively identify this molecule, and we speculate on its possible involvement in specialized protease-mediated effector functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号