首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis ccpA mutant strains exhibit two distinct phenotypes: they are defective in catabolite repression, and their growth on minimal media is strongly impaired. This growth defect is largely due to a lack of expression of the gltAB operon. However, growth is impaired even in the presence of glutamate. Here, we demonstrate that the ccpA mutant strain needs methionine and the branched-chain amino acids for optimal growth. The control of expression of the ilv-leu operon by CcpA provides a novel regulatory link between carbon and amino acid metabolism.  相似文献   

2.
3.
4.
5.
The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria.  相似文献   

6.
CcpA是革兰氏阳性菌中由ccpA基因编码的介导碳分解代谢物阻遏的全局调控因子。近年来的研究表明,CcpA不仅参与CCR效应,还直接或间接参与病原细菌毒力基因的表达调控。为探讨CcpA对单核细胞增生李斯特菌(Lm)毒力的影响,应用同源重组方法构建CcpA缺失菌株。以BLAB/c小鼠为实验动物模型,检测野生株EGDe和缺失株EGDeΔccpA侵染小鼠后的半数致死剂量 LD50和肝脾细菌载菌量,观察小鼠肝脏和脾脏的病理形态变化。结果显示:缺失CcpA后,Lm的LD50降低了10倍,虽然肝脾细菌载菌量没有显著变化,但EGDe△ccpA对小鼠肝和脾的损害更为严重,表明CcpA缺失增强了细菌的毒力,CcpA 对Lm 毒力基因的表达可能具有间接或者直接的调控作用。  相似文献   

7.
8.
9.
10.
11.
Carbon catabolite repression of several catabolic operons in Bacillus subtilis is mediated by the repressor CcpA. An inactivation of the ccpA gene has two distinct phenotypes: (i) catabolite repression of catabolic operons is lost and (ii) the growth of bacteria on minimal medium is severely impaired. We have analyzed the physiological properties of a ccpA mutant strain and show that the ccpA mutation does not affect sugar transport. We have isolated extragenic suppressors of ccpA that suppress the growth defect (sgd mutants). Catabolite repression of beta-xylosidase synthesis was, however, not restored suggesting that the suppressor mutations allow differentiation between the phenotypes of the ccpA mutant. A close inspection of the growth requirements of the ccpA mutant revealed the inability of the mutant to utilize inorganic ammonium as a single source of nitrogen. An intact ccpA gene was found to be required for expression of the gltAB operon encoding glutamate synthase. This enzyme is necessary for the assimilation of ammonium. In a sgd mutant, gltAB operon expression was no longer dependent on ccpA, suggesting that the poor expression of the gltAB operon is involved in the growth defect of the ccpA mutant.  相似文献   

12.
13.
14.
15.
Glycolysis is one of the main pathways of carbon catabolism in Bacillus subtilis. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase, the key enzyme of glycolysis from an energetic point of view, is induced by glucose and other sugars. Two regulators are involved in induction of the gapA operon, the product of the first gene of the operon, the CggR repressor, and catabolite control protein A (CcpA). CcpA is required for induction of the gapA operon by glucose. Genetic evidence has demonstrated that CcpA does not control the expression of the gapA operon by binding directly to a target in the promoter region. Here, we demonstrate by physiological analysis of the inducer spectrum that CcpA is required only for induction by sugars transported by the phosphotransferase system (PTS). A functional CcpA is needed for efficient transport of these sugars. This interference of CcpA with PTS sugar transport results from an altered phosphorylation pattern of HPr, a phosphotransferase of the PTS. In a ccpA mutant strain, HPr is nearly completely phosphorylated on a regulatory site, Ser-46, and is trapped in this state, resulting in its inactivity in PTS phosphotransfer. A mutation in HPr affecting the regulatory phosphorylation site suppresses both the defect in PTS sugar transport and the induction of the gapA operon. We conclude that a low-molecular effector derived from glucose that acts as an inducer for the repressor CggR is limiting in the ccpA mutant.  相似文献   

16.
17.
CcpA was purified from Escherichia coli BL21 (lambda DE3)/pLysS carrying plasmid pTSC5, which was constructed by inserting the ccpA gene into the polycloning site of pGEM4. The purified protein migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent mass of 38 kDa but was eluted from a calibrated Bio-Gel P-100 column with an apparent mass of 75 kDa. Western blot (immunoblot) analysis revealed the presence of CcpA in E. coli BL21 (lambda DE3)/pLysS/pTSC5, which carries ccpA, and in wild-type Bacillus subtilis 168 but not in E. coli BL21 (lambda DE3)/pLysS/pGEM4 or in B. subtilis WLN-29, in which ccpA is inactivated by transposon Tn917 insertion. Purified CcpA bound to DNA containing amyO and retarded its mobility in electrophoretic mobility shift analysis. Complete retardation of the DNA required 75 ng of CcpA per assay. In DNase protection analysis, CcpA bound to DNA containing amyO and protected a region spanning amyO when either DNA strand was labeled. Mutant forms of amyO not effective in catabolite repression were not retarded by CcpA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号