首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, stimulates proliferation and contractility in hepatic stellate cells, the principal matrix-producing cells in the liver, and inhibits proliferation via S1P receptor 2 (S1P(2)) in hepatocytes in rats in vitro. A potential role of S1P and S1P(2) in liver regeneration and fibrosis was examined in S1P(2)-deficient mice. Nuclear 5-bromo-2'-deoxy-uridine labeling, proliferating cell nuclear antigen (PCNA) staining in hepatocytes, and the ratio of liver weight to body weight were enhanced at 48 h in S1P(2)-deficient mice after a single carbon tetrachloride (CCl(4)) injection. After dimethylnitrosamine (DMN) administration with a lethal dose, PCNA staining in hepatocytes was enhanced at 48 h and survival rate was higher in S1P(2)-deficient mice. Serum aminotransferase level was unaltered in those mice compared with wild-type mice in both CCl(4)- and DMN-induced liver injury, suggesting that S1P(2) inactivation accelerated regeneration not as a response to enhanced liver damage. After chronic CCl(4) administration, fibrosis was less apparent, with reduced expression of smooth-muscle alpha-actin-positive cells in the livers of S1P(2)-deficient mice, suggesting that S1P(2) inactivation ameliorated CCl(4)-induced fibrosis due to the decreased accumulation of hepatic stellate cells. Thus, S1P plays a significant role in regeneration and fibrosis after liver injury via S1P(2).  相似文献   

2.
《Cellular signalling》2014,26(5):1040-1047
We demonstrate that pre-treatment of estrogen receptor negative MDA-MB-231 breast cancer cells containing ectopically expressed HA-tagged sphingosine 1-phosphate receptor-2 (S1P2) with the sphingosine kinase 1/2 inhibitor SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole) or the sphingosine kinase 2 selective inhibitor (R)-FTY720 methyl ether (ROMe) or sphingosine kinase 2 siRNA induced the translocation of HA-tagged S1P2 and Y416 phosphorylated c-Src to the nucleus of these cells. This is associated with reduced growth of HA-tagged S1P2 over-expressing MDA-MB-231 cells. Treatment of HA-S1P2 over-expressing MDA-MB-231 cells with the sphingosine 1-phosphate receptor-4 (S1P4) antagonist CYM50367 or with S1P4 siRNA also promoted nuclear translocation of HA-tagged S1P2. These findings identify for the first time a signaling pathway in which sphingosine 1-phosphate formed by sphingosine kinase 2 binds to S1P4 to prevent nuclear translocation of S1P2 and thereby promote the growth of estrogen receptor negative breast cancer cells.  相似文献   

3.
Sphingosine 1-phosphate (S1P) in blood and lymph controls T cell traffic and proliferation through type 1 S1P receptor (S1P(1)) signals, but suppression of IFN-gamma generation has been the only consistently observed effect on T cell cytokines. The fact that S1P enhances the development of Th17 cells from Ag-challenged transgenic S1P(1)-overexpressing CD4 T cells suggested that the S1P-S1P(1) axis may promote the expansion of Th17 cells in wild-type mice. In a model of Th17 cell development from CD4 T cells stimulated by anti-CD3 plus anti-CD28 Abs and a mixture of TGF-beta1, IL-1, and IL-6, S1P enhanced their number and IL-17-generating activity the same as IL-23. As for IL-23 enhancement of Th17 cell development, that by S1P was prevented by IL-4 plus IFN-gamma and by IL-27. The prevention of S1P augmentation of Th17 cell development by the S1P receptor agonist and down-regulator FTY720 implies that FTY720 immunosuppression is attributable partially to inhibition of Th17-mediated inflammation.  相似文献   

4.
The sphingosine 1-phosphate receptor agonist FTY720 is a novel immunomodulator that sequesters lymphocytes in secondary lymphoid organs and thereby prevents their migration to sites of inflammation. However, there is currently no information available on whether this drug affects Th1 or Th2 cell-mediated lung-inflammatory responses. The effect of FTY720 was therefore investigated in a murine airway inflammation model using OVA-specific, in vitro differentiated, and adoptively transferred Th1 and Th2 cells. Both Th1 and Th2 cells express a similar pattern of FTY720-targeted sphingosine 1-phosphate receptors. The OVA-induced Th1-mediated airway inflammation characterized by increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage fluid was significantly inhibited by oral FTY720 treatment. Similarly, FTY720 suppressed the Th2 cell-induced bronchoalveolar lavage fluid eosinophilia and the infiltration of T lymphocytes and eosinophils into the bronchial tissue. Moreover, the Ag-induced bronchial hyperresponsiveness to inhaled metacholine was almost completely blocked. The inhibitory effect of FTY720 on airway inflammation, induction of bronchial hyperresponsiveness, and goblet cell hyperplasia could be confirmed in an actively Ag-sensitized murine asthma model, clearly indicating that Th2 cell-driven allergic diseases such as asthma could benefit from such treatment.  相似文献   

5.
Endothelial cell barrier regulation by sphingosine 1-phosphate   总被引:7,自引:0,他引:7  
Disruption of vascular barrier integrity markedly increases permeability to fluid and solute and is the central pathophysiologic mechanism of many inflammatory disease processes, including sepsis and acute lung injury (ALI). Dynamic control of the endothelial barrier involves complex signaling to the endothelial cytoskeleton and to adhesion complexes between neighboring cells and between cells and the underlying matrix. Sphingosine 1-phosphate (S1P), a biologically active lipid generated by hydrolysis of membrane lipids in activated platelets, organizes actin into a strong cortical ring and strengthens both intercellular and cell-matrix adherence. The mechanisms by which S1P increases endothelial barrier integrity remain the focus of intense basic research. The downstream structural changes induced by S1P interact to decrease vascular permeability to fluid and solute, which translates into a reduction lung edema formation in animal models of ALI, thus suggesting a potentially life-saving therapeutic role for vascular barrier modulation in critically ill patients.  相似文献   

6.
Vascular endothelial cells (ECs) have a finite lifespan when cultured in vitro and eventually enter an irreversible growth arrest state called "cellular senescence." It has been shown that sphingolipids may be involved in senescence; however, the molecular links involved are poorly understood. In this study, we investigated the signaling and functions of sphingosine 1-phosphate (S1P), a serum-borne bioactive sphingolipid, in ECs of different in vitro ages. We observed that S1P-regulated responses are significantly inhibited and the S1P(1-3) receptor subtypes are markedly increased in senescent ECs. Increased expression of S1P(1) and S1P(2) was also observed in the lesion regions of atherosclerotic endothelium, where senescent ECs have been identified in vivo. S1P-induced Akt and ERK1/2 activation were comparable between ECs of different in vitro ages; however, PTEN (phosphatase and tensin homolog deleted on chromosome 10) activity was significantly elevated and Rac activation was inhibited in senescent ECs. Rac activation and senescent-associated impairments were restored in senescent ECs by the expression of dominant-negative PTEN and by knocking down S1P(2) receptors. Furthermore, the senescent-associated impairments were induced in young ECs by the expression of S1P(2) to a level similar to that of in vitro senescence. These results indicate that the impairment of function in senescent ECs in culture is mediated by an increase in S1P signaling through S1P(2)-mediated activation of the lipid phosphatase PTEN.  相似文献   

7.
The lipid mediator sphingosine 1-phosphate (S1P) may alter the proliferation of mesangial cells during pathophysiological processes. Here, S1P stimulated proliferation of rat mesangial cells and phosphorylation of MAPKs at subconfluent cell density. Both effects were inhibited by pertussis toxin treatment. Mesangial cells expressed several S1P receptors of the endothelial differentiation gene family: EDG-1, -3, -5, and -8. Conversely, S1P induced apoptosis at low cell density (2 x 10(4) cells/cm(2)), which was demonstrated by flow cytometry and Hoechst staining. Apoptosis was observed also in quiescent or growing cells and was not reverted by lysophosphatidic acid or platelet-derived growth factor. S1P enhanced phosphorylation of SAPKs. Incubation with [(33)P]S1P, [(3)H]S1P, and [(3)H]sphingosine demonstrated increased S1P hydrolysis, resulting in enhanced intracellular sphingosine levels and decreased S1P levels. A rise in total ceramide levels was also observed; however, ceramide did not originate from [(3)H]sphingosine, and S1P-induced apoptosis was not inhibited by fumonisin B, precluding involvement of de novo ceramide synthesis in apoptosis. Therefore, we suggest that sphingosine accumulation and decreased S1P are primarily responsible for S1P-induced apoptosis. In conclusion, incubation of low-density mesangial cells with S1P results in apoptosis, presumably due to increased S1P hydrolysis.  相似文献   

8.
Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known.Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts.Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions.  相似文献   

9.
Sphingosine 1-phosphate (S1P), a multifunctional lipid mediator, regulates lymphocyte trafficking, vascular permeability, and angiogenesis by activation of the S1P1 receptor. This receptor is activated by FTY720-P, a phosphorylated derivative of the immunosuppressant and vasoactive compound FTY720. However, in contrast to the natural ligand S1P, FTY720-P appears to act as a functional antagonist, even though the mechanisms involved are poorly understood. In this study, we investigated the fate of endogenously expressed S1P1 receptor in agonist-activated human umbilical vein endothelial cells and human embryonic kidney 293 cells expressing green fluorescent protein-tagged S1P1. We show that FTY720-P is more potent than S1P at inducing receptor degradation. Pretreatment with an antagonist of S1P1, VPC 44116, prevented receptor internalization and degradation. FTY720-P did not induce degradation of internalization-deficient S1P1 receptor mutants. Further, small interfering RNA-mediated down-regulation of G protein-coupled receptor kinase-2 and beta-arrestins abolished FTY720-P-induced S1P1 receptor degradation. These data suggest that agonist-induced phosphorylation of S1P1 and subsequent endocytosis are required for FTY720-P-induced degradation of the receptor. S1P1 degradation is blocked by MG132, a proteasomal inhibitor. Indeed, FTY720-P strongly induced polyubiquitinylation of S1P1 receptor, whereas S1P at concentrations that induced complete internalization was not as efficient, suggesting that receptor internalization is required but not sufficient for ubiquitinylation and degradation. We propose that the ability of FTY720-P to target the S1P1 receptor to the ubiquitinylation and proteasomal degradation pathway may at least in part underlie its immunosuppressive and anti-angiogenic properties.  相似文献   

10.
Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound.  相似文献   

11.
We show here that the endogenous sphingosine 1-phosphate 5 receptor (S1P5, a G protein coupled receptor (GPCR) whose natural ligand is sphingosine 1-phosphate (S1P)) and sphingosine kinases 1 and 2 (SK1 and SK2), which catalyse formation of S1P, are co-localised in the centrosome of mammalian cells, where they may participate in regulating mitosis. The centrosome is a site for active GTP–GDP cycling involving the G-protein, Gi and tubulin, which are required for spindle pole organization and force generation during cell division. Therefore, the presence of S1P5 (which normally functions as a plasma membrane guanine nucleotide exchange factor, GEF) and sphingosine kinases in the centrosome might suggest that S1P5 may function as a ligand activated GEF in regulating G-protein-dependent spindle formation and mitosis. The addition of S1P to cells inhibits trafficking of S1P5 to the centrosome, suggesting a dynamic shuttling endocytic mechanism controlled by ligand occupancy of cell surface receptor. We therefore propose that the centrosomal S1P5 receptor might function as an intracellular target of S1P linked to regulation of mitosis.  相似文献   

12.
The bioactive molecule sphingosine 1-phosphate (S1P) is abundantly stored in platelets and can be released extracellularly. However, although they have high sphingosine (Sph) kinase activity, platelets lack the de novo sphingolipid biosynthesis necessary to provide the substrates. Here, we reveal a generation pathway for Sph, the precursor of S1P, in human platelets. Platelets incorporated extracellular 3H-labeled Sph much faster than human megakaryoblastic cells and rapidly converted it to S1P. Furthermore, Sph formed from plasma sphingomyelin (SM) by bacterial sphingomyelinase (SMase) and neutral ceramidase (CDase) was rapidly incorporated into platelets and converted to S1P, suggesting that platelets use extracellular Sph as a source of S1P. Platelets abundantly express SM, possibly supplied from plasma lipoproteins, at the cell surface. Treating platelets with bacterial SMase resulted in Sph generation at the cell surface, conceivably by the action of membrane-bound neutral CDase. Simultaneously, a time-dependent increase in S1P levels was observed. Finally, we demonstrated that secretory acid SMase also induces S1P increases in platelets. In conclusion, our results suggest that in platelets, Sph is supplied from at least two sources: generation in the plasma followed by incorporation, and generation at the outer leaflet of the plasma membrane, initiated by cell surface SM degradation.  相似文献   

13.
Sphingosine 1-phosphate (S1P) is released at sites of tissue injury and effects cellular responses through activation of G protein-coupled receptors. The role of S1P in regulating cardiomyocyte survival following in vivo myocardial ischemia-reperfusion (I/R) injury was examined by using mice in which specific S1P receptor subtypes were deleted. Mice lacking either S1P(2) or S1P(3) receptors and subjected to 1-h coronary occlusion followed by 2 h of reperfusion developed infarcts equivalent to those of wild-type (WT) mice. However, in S1P(2,3) receptor double-knockout mice, infarct size following I/R was increased by >50%. I/R leads to activation of ERK, JNK, and p38 MAP kinases; however, these responses were not diminished in S1P(2,3) receptor knockout compared with WT mice. In contrast, activation of Akt in response to I/R was markedly attenuated in S1P(2,3) receptor knockout mouse hearts. Neither S1P(2) nor S1P(3) receptor deletion alone impaired I/R-induced Akt activation, which suggests redundant signaling through these receptors and is consistent with the finding that deletion of either receptor alone did not increase I/R injury. The involvement of cardiomyocytes in S1P(2) and S1P(3) receptor mediated activation of Akt was tested by using cells from WT and S1P receptor knockout hearts. Akt was activated by S1P, and this was modestly diminished in cardiomyocytes from S1P(2) or S1P(3) receptor knockout mice and completely abolished in the S1P(2,3) receptor double-knockout myocytes. Our data demonstrate that activation of S1P(2) and S1P(3) receptors plays a significant role in protecting cardiomyocytes from I/R damage in vivo and implicate the release of S1P and receptor-mediated Akt activation in this process.  相似文献   

14.
Sphingolipid metabolites, ceramide, sphingosine, and sphingosine 1-phosphate, have emerged as a new class of lipid biomodulators of various cell functions. These metabolites are known to function not only as intracellular second messengers, but also in the extracellular space. Sphingosine 1-phosphate especially has numerous functions as an important extracellular mediator that binds to cell surface S1P receptors. Recent studies have also shown that sphingolipid-metabolizing enzymes function not only in intracellular organelles but also in the extracellular spaces, including the outer leaflet of the plasma membrane. This review focuses on the metabolic enzymes (acid and alkaline sphingomyelinases, neutral ceramidase, and sphingosine kinase) that are involved in the production of the sphingolipid metabolites in these extracellular spaces, and on the metabolic pathway itself.  相似文献   

15.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate(S1P) are potent lipid growth factors with similar abilities tostimulate cytoskeleton-based cellular functions. Their effects aremediated by a subfamily of G protein-coupled receptors (GPCRs) encoded by endothelial differentiation genes (edgs). Wehypothesize that large quantities of LPA and S1P generated by activatedplatelets may influence endothelial cell functions. Using an in vitrowound healing assay, we observed that LPA and S1P stimulated closure ofwounded monolayers of human umbilical vein endothelial cells and adultbovine aortic endothelial cells, which express LPA receptor Edg2, andS1P receptors Edg1 and Edg3. The two major components of wound healing,cell migration and proliferation, were stimulated individually by bothlipids. LPA and S1P also stimulated intracellular Ca2+mobilization and mitogen-activated protein kinase (MAPK)phosphorylation. Pertussis toxin partially blocked the effects of bothlipids on endothelial cell migration, MAPK phosphorylation, andCa2+ mobilization, implicatingGi/o-coupled Edg receptor signaling inendothelial cells. LPA and S1P did not cross-desensitize each other inCa2+ responses, suggesting involvement of distinctreceptors. Thus LPA and S1P affect endothelial cell functions throughsignaling pathways activated by distinct GPCRs and may contribute tothe healing of wounded vasculatures.

  相似文献   

16.
17.
Sphingosine 1-phosphate (S1P) in blood and lymph controls lymphoid traffic and tissue migration of T cells through signals from the type 1 S1PR (S1P(1)), but less is known of effects of the S1P-S1P(1) axis on nonmigration functions of T cells. CD4 T cells from a double transgenic (DTG) mouse express OTII TCRs specific for OVA peptide 323-339 (OVA) and a high level of transgenic S1P(1), resistant to suppression by T cell activation. OVA-activated DTG CD4 T cells respond as expected to S1P by chemotactic migration and reduction in secretion of IFN-gamma. In addition, DTG CD4 T cells stimulated by OVA secrete a mean of 2.5-fold more IL-17 than those from OTII single transgenic mice with concomitantly higher levels of mRNA encoding IL-17 by real-time PCR and of CD4 T cells with intracellular IL-17 detected by ELISPOT assays. OVA challenge of s.c. air pockets elicited influx of more OTII TCR-positive T cells producing a higher level of IL-17 in DTG mice than OTII control mice. Augmentation of the number and activity of Th17 cells by the S1P-S1P(1) axis may thus enhance host defense against microbes and in other settings increase host susceptibility to autoimmune diseases.  相似文献   

18.
Dermal fibroblasts are important regulators of inflammatory and immune responses in the skin. The aim of the present study was to elucidate the interaction between two key players in inflammation, Toll-like receptors (TLRs) and sphingosine 1-phosphate (S1P), in normal human fibroblasts in the context of inflammation, fibrosis and cell migration. We demonstrate that TLR2 ligation strongly enhances the production of the pro-inflammatory cytokines IL-6 and IL-8. S1P significantly induces pro-inflammatory cytokines time- and concentration-dependently via S1P receptor (S1PR)2 and S1PR3. The TLR2/1 agonist Pam3CSK4 and S1P (> 1 μM) or TGF-β markedly upregulate IL-6 and IL-8 secretion. Pam3CSK4 and S1P alone promote myofibroblast differentiation as assessed by significant increases of α-smooth muscle actin and collagen I expression. Importantly, costimulation with S1P (> 1 μM) induces differentiation into myofibroblasts. In contrast, Pam3CSK4 and low S1P concentrations (< 1 μM) accelerate cell migration. These results suggest that TLR2/1 signaling and S1P cooperate in pro-inflammatory cytokine production and myofibroblast differentiation and promote cell migration of skin fibroblasts in a S1P-concentration dependent manner. Our findings provide significant insights into how infectious stimuli or danger signals and sphingolipids contribute to dermal inflammation which may be relevant for skin tissue repair after injury or disease.  相似文献   

19.
There is growing evidence that sphingosine 1-phosphate (S1P) plays an important role in regulating the development, morphology, and function of the cardiovascular system. There is little data, however, regarding the relative contribution of endogenous S1P and its cognate receptors (referred to as S1P(1-5)) to cardiovascular homeostasis. We used S1P(2) receptor knockout mice (S1P(2)(-/-)) to evaluate the role of S1P(2) in heart and vascular function. There were no significant differences in blood pressure between wild-type and S1P(2)(-/-) mice, measured in awake mice. Cardiac function, evaluated in situ by using a Millar catheter, was also not different in S1P(2)(-/-) mice under baseline or stimulated conditions. In vivo analysis of vascular function by flowmetry revealed decreases in mesenteric and renal resistance in S1P(2)(-/-) mice, especially during vasoconstriction with phenylephrine. In intact aortic rings, the concentration-force relations for both KCl and phenylephrine were right shifted in S1P(2)(-/-) mice, whereas the maximal isometric forces were not different. By contrast, in deendothelialized rings the concentration-force relations were not different but the maximal force was significantly greater in S1P(2)(-/-) aorta. Histologically, there were no apparent differences in vascular morphology. These data suggest that the S1P(2) receptor plays an important role in the function of the vasculature and is an important mediator of normal hemodynamics. This is mediated, at least in part, through an effect on the endothelium, but direct effects on vascular smooth muscle cannot be ruled out and require further investigation.  相似文献   

20.
The cytokines secreted by pathogen-activated human dendritic cells (DC) are strongly regulated in vitro by histamine, a major component of mast cell granules, ultimately modulating the capacity of the DC to polarize naive T cells. Because DC and mast cells are located in close proximity in peripheral compartments, we hypothesized that mast cell products would influence the maturation of DC and hence the Th balance of an immune response in vivo. In this study, we show that specific mast cell degranulation stimuli, given s.c. in mice with Ag and adjuvant, produce effector T cells that proliferate to Ag but secrete dramatically reduced levels of IFN-gamma and increased amounts of IL-4 compared with control T cells primed in the absence of a mast cell stimulus. Immunization with Ag and adjuvant in the presence of a degranulation stimulus also resulted in the accumulation of DC in the draining lymph nodes that had reduced capacity to induce Ag-specific Th1 cells, in comparison with DC from mice lacking a degranulation stimulus. Therefore, by acting upon DC at sites of inflammation, mast cells play a critical role in determining the polarity of Ag-specific T cell responses in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号