首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron depletion has been confirmed as an efficient strategy for cancer treatment. In the current study, a series of 1,4,7-triazacyclononane derivatives HE-NO2A, HP-NO2A and NE2P2A, as well as the bifunctional chelators p-NO2-PhPr-NE3TA and p-NH2-PhPr-NE3TA were synthesized and evaluated as iron-depleting agents for the potential anti-cancer therapy against human hepatocellular carcinoma. The cytotoxicity of these chelators was measured using hepatocellular cancer cells and compared with the clinically available iron depletion agent DFO and the universal metal chelator DTPA. All these 1,4,7-triazacyclononane-based chelators exhibited much stronger antiproliferative activity than DFO and DTPA. Among them, chelators with phenylpropyl side chains, represented by p-NO2-PhPr-NE3TA and p-NH2-PhPr-NE3TA, displayed the highest antiproliferative activity against HepG2 cells. Hence, these compounds are attractive candidates for the advanced study as iron depletion agents for the potential anti-cancer therapy, and could be further in conjugation with a targeting moiety for the future development in targeted iron depletion therapy.  相似文献   

2.
Activation of caspase pathways during iron chelator-mediated apoptosis   总被引:11,自引:0,他引:11  
Iron chelators have traditionally been used in the treatment of iron overload. Recently, chelators have also been explored for their ability to limit oxidant damage in cardiovascular, neurologic, and inflammatory disease as well as to serve as anti-cancer agents. To determine the mechanism of cell death induced by iron chelators, we assessed the time course and pathways of caspase activation during apoptosis induced by iron chelators. We report that the chelator tachpyridine sequentially activates caspases 9, 3, and 8. These caspases were also activated by the structurally unrelated chelators dipyridyl and desferrioxamine. The critical role of caspase activation in cell death was supported by microinjection experiments demonstrating that p35, a broad spectrum caspase inhibitor, protected HeLa cells from chelator-induced cell death. Apoptosis mediated by tachpyridine was not prevented by blocking the CD95 death receptor pathway with a Fas-associated death domain protein (FADD) dominant-negative mutant. In contrast, chelator-mediated cell death was blocked in cells microinjected with Bcl-XL and completely inhibited in cells microinjected with a dominant-negative caspase 9 expression vector. Caspase activation was not observed in cells treated with N-methyl tachpyridine, an N-alkylated derivative of tachpyridine which lacks an ability to react with iron. These results suggest that activation of a mitochondrial caspase pathway is an important mechanism by which iron chelators induce cell death.  相似文献   

3.
Lee SK  Jang HJ  Lee HJ  Lee J  Jeon BH  Jun CD  Lee SK  Kim EC 《Life sciences》2006,79(15):1419-1427
Iron is essential for neoplastic cell growth, and iron chelators have been tested for potential anti-proliferative and anti-cancer effects, but the effects of iron chelators on oral cancer have not been clearly elucidated. To determine the mechanism of cell death induced by iron chelators, we explored the pathways of the three structurally related mitogen-activated protein (MAP) kinase subfamilies during iron chelator-induced apoptosis and differentiation of immortalized human oral keratinocytes (IHOK) and oral cancer cells (HN4). The iron chelator deferoxamine (DFO) exerted potent time- and dose-dependent inhibitory effects on the growth and apoptosis of IHOK and HN4 cells. DFO strongly activates p38 MAP kinase and extracellular signal-regulated kinase (ERK), but does not activate c-Jun N-terminal kinase/stress-activated protein kinase. Of the three MAP kinase blockers used, the selective p38 MAP kinase inhibitor SB203580 and ERK inhibitor PD98059 protected IHOK and HN4 cells against iron chelator-induced cell death, which indicates that the p38 and ERK MAP kinase is a major mediator of apoptosis induced by this iron chelator. Interestingly, treatment of IHOK and HN4 cells with SB203580 and PD98059 abolished cytochrome c release, as well as the activation of caspase-3 and caspase-8. DFO suppressed the expression of epithelial differentiation markers such as involucrin, CK6, and CK19, and this suppression was blocked by p38 and ERK MAP kinase inhibitors. Collectively, these data suggested that p38 and ERK MAP kinase plays an important role in iron chelator-mediated cell death and in the suppression of differentiation of oral immortalized and malignant keratinocytes, by activating a downstream apoptotic cascade that executes the cell death pathway.  相似文献   

4.
Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized “soft” donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.  相似文献   

5.
We synthesized and evaluated new specific tridentate iron(III) chelators of 2,6-bis[hydroxyamino]-1,3,5-triazine (BHT) family for use in iron deprivation cancer therapy. Physical properties of BHT chelators are easily customizable allowing easy penetration through cellular membranes. Antiproliferative activity of new BHT chelators was studied on MDA-MB-231 and MiaPaCa cells and compared to a clinically available new oral iron chelator, deferasirox (DFX). The antiproliferative activity of new chelators was found to correlate with iron(III) chelation ability and some of analogs showed substantially higher antiproliferative activity than DFX.  相似文献   

6.
Iron-dependent oxidative stress, elevated levels of iron and of monoamine oxidase (MAO)-B activity, and depletion of antioxidants in the brain may be major pathogenic factors in Parkinson's disease, Alzheimer's disease and related neurodegenerative diseases. Accordingly, iron chelators, antioxidants and MAO-B inhibitors have shown efficacy in a variety of cellular and animal models of CNS injury. In searching for novel antioxidant iron chelators with potential MAO-B inhibitory activity, a series of new iron chelators has been designed, synthesized and investigated. In this study, the novel chelators were further examined for their activity as antioxidants, MAO-B inhibitors and neuroprotective agents in vitro. Three of the selected chelators (M30, HLA20 and M32) were the most effective in inhibiting iron-dependent lipid peroxidation in rat brain homogenates with IC50 values (12-16 microM), which is comparable with that of desferal, a prototype iron chelator that is not has orally active. Their antioxidant activities were further confirmed using electron paramagnetic resonance spectroscopy. In PC12 cell culture, the three novel chelators at 0.1 microM were able to attenuate cell death induced by serum deprivation and by 6-hydroxydopamine. M30 possessing propargyl, the MAO inhibitory moiety of the anti-Parkinson drug rasagiline, displayed greater neuroprotective potency than that of rasagiline. In addition, in vitro, M30 was a highly potent non-selective MAO-A and MAO-B inhibitor (IC50 < 0.1 microM). However, HLA20 was more selective for MAO-B but had poor MAO inhibition, with an IC50 value of 64.2 microM. The data suggest that M30 and HLA20 might serve as leads in developing drugs with multifunctional activities for the treatment of various neurodegenerative disorders.  相似文献   

7.
The protective effect on iron-supplemented hepatocyte cultures of three iron chelators, pyoverdin Pa and hydroxypyrid-4-one derivatives CP20 and CP22, was compared to that of the widely known desferrioxamine B (Desferal:DFO), on the basis of two criteria: (a) their effectiveness in inhibiting free malondialdehyde (MDA) production as an index of iron-induced lipid peroxidation; and (b) their ability to reduce intracellular enzyme leakage. In view of these two markers of iron toxicity, the protective effect of these chelators was classified as follows: DFO > CP20 > or = CP22 > Pa. The mechanism of cellular protection was elucidated by investigating both the iron-chelating activity and the free radical scavenging property of these agents. As concerns the iron chelation, DFO and Pa exerted the same rank order as for cytoprotection (DFO > Pa). The free radical scavenging property toward hydroxyl radical .OH and peroxyl radical ROO. was investigated in a cell-free experimental model. The two siderophores, DFO and Pa, appeared to have a lower antiradical activity toward .OH than hydroxypyrid-4-one CP22. This .OH scavenging activity was classified as follows: CP22 > Pa > DFO. Moreover, the chelators exhibited for the quenching of ROO. the same order of effectiveness as that observed for cellular protection: DFO > CP20 > or = CP22 > Pa. These data indicate that, in addition to the iron-chelating activity which represents the most important property for determining the protection capacity of these iron chelators, their free radical scavenging ability also must be taken into account. This direct demonstration of a strong association between the free radical scavenging activity and the protective effect of iron chelators further increases the prospects for the development and clinical applications of new oral chelating drugs.  相似文献   

8.
Two types of iron chelators, desferrioxamine (DFO) and 2,2'-bipyridyl (BIP), selected for their differential binding properties, permeability and stoechiometry, were tested for their ability to inhibit the in vitro proliferation of the carpet shell clam parasite Perkinsus atlanticus. A tetrazolium-based assay was used to determine the effect of the drugs on cell proliferation. Both chelators were able to inhibit P. atlanticus proliferation in a dose-dependent manner, the 50% inhibitory concentration were 14 and 24 microM for DFO and BIP, respectively, in a 72 h test. This effect was reversed by co-addition of iron, confirming that this activity is due to the sequestration of iron. These results indicate a high degree of susceptibility of the protozoan parasite to chelator-induced iron deprivation. However, this effect was reversible upon removal of the drugs, indicating that the action of both chelators was cytostatic. For the range of concentrations tested the combined drug effects was not significantly higher than the additive effect of the individual drugs.  相似文献   

9.
TPEN is an amino chelator of transition metals that is effective at the cellular and whole organism levels. Although TPEN of often used as a selective zinc chelators, it has affinity for copper and iron and has been shown to chelate both biologically. We have previously shown that TPEN selectively kills colon cancer cells based on its ability to chelate copper, which is highly enriched in colon cancer cells. The TPEN-copper complex is redox active thus allowing for increased ROS production in cancer cells and as such cellular toxicity. Here we generate TPEN derivatives with the goal of increasing its selectivity for copper while minimizing zinc chelation to reduce potential side effects. We show that one of these derivatives, TPEEN despite the fact that it exhibits reduced affinity for transition metals, is effective at inducing cell death in breast cancer cells, and exhibits less toxicity to normal breast cells. The toxicity effect of the both chelators coupled to the metal content of the different cell types reveals that they exhibit their toxicity through chelating redox active metals (iron and copper). As such TPEEN is an important novel chelators that can be exploited in anti-cancer therapies.  相似文献   

10.
Summary Iron chelators of different physicochemical properties were studied for their ability to donate iron in vitro to uninduced K562 cells, human bone marrow cells and purified human erythroblasts. To a large extent uptake was found to be related to lipophilicity and those chelators able to deliver iron to the cells in significant amounts were also able to deliver iron to ferritin and haem. Some differences in the distribution of iron delivered was observed but no chelator showed exclusive delivery to or rejection of a particular cellular iron compartment. Several chelators could probably substitute for transferrin and be used to probe metabolic events subsequent to iron removal from transferrin. Two chelators which were excellent iron donors were also found to cause considerable inhibition of iron incorporation into haem from transferrin. The implications of this for in vivo toxicity are briefly discussed.  相似文献   

11.
In this study we explore the antimalarial effects of 3-hydroxypyridin-4-ones (CP compounds), a family of bidentate orally effective iron chelators in experimental animal systems in vivo and in vitro, and examine whether the iron chelator deferoxamine (DF) is active against human infection with P. falciparum. There was direct relation between lipid solubility of the CP compounds, which would facilitate membrane transit, and their in vivo antimalarial action, suggesting direct intracellular iron chelation as the most likely explantation for the antimalarial effect of iron chelators. Results of the double-blind, placebo controlled trial of DF in humans with asymptomatic parasitemia provided unequivocal evidence that this iron-chelating agent has antimalarial activity. Depriving the parasite of a metabolically important source of iron may represent a novel approach to antimalarial drug development. DF is a relatively ineffective intraerythrocytic chelator, and our data indicate that other orally effective iron chelators may have superior antimalarial activity in vivo. A systematic screening of available iron chelating drugs may result in the identification of potentially useful antimalarial compounds.  相似文献   

12.
The iron chelators desferrioxamine and 1,2-dimethyl-3-hydroxypyrid-4-one (L1) inhibited human platelet aggregation in vitro as well as thromboxane A2 synthesis and conversion of arachidonate to lipoxygenase-derived products. Non-chelating compounds related to L1 were without effect on cyclooxygenase or lipoxygenase activity. Since both cyclooxygenase and lipoxygenase are iron-containing enzymes, it is suggested that the inhibition of platelet function by these iron chelators may be related to the removal or binding of iron associated with these enzymes. These iron chelators may therefore be of potential therapeutic value as platelet antiaggregatory agents and of possible use in the treatment of atherosclerotic and inflammatory joint diseases.  相似文献   

13.
Rodents and dogs are frequently used for preclinical toxicologic assessment of candidate iron chelators. Although the iron-clearing profile of a ligand often is known in rodents, and sometimes in primates, such information in dogs is rarely, if ever, available. Because of this, toxicity studies in dogs could be misleading; chelators that may otherwise be suitable for human clinical studies may be abandoned as being unacceptably toxic, simply because, unknown to the investigator, these drugs remove more iron in this species than would have been expected on the basis of iron clearance results in other species. This is a scenario that we encountered during toxicity trials of (S)-beta,beta-dimethyl-4'-hydroxydesazadesmethyldesferrithiocin in dogs. Thus, we developed an iron-overloaded dog model in which it is possible to evaluate iron-clearing efficiencies of potential therapeutic ligands. Seven deferration agents have been screened in this model, and the results were compared with the iron-clearing efficiency of the same ligands in an iron-loaded Cebus apella monkey model. The data suggest that while the iron-clearing efficiencies of most of the drugs were similar between the two species, there can be profound differences. This is consistent with the idea that caution needs to be exercised when carrying out preclinical toxicity evaluations of a chelator in dogs without first measuring the drug's iron-clearing efficiency in this species.  相似文献   

14.
In this paper, we present the responses of the white-rot fungus Perenniporia medulla-panis to iron availability with regard to alterations in growth, expression of cellular proteins, Fe3+-reducing activity, and Fe3+ chelators production. Iron supplementation stimulated fungal growth but did not result in a significant increase in biomass production. Catechol and hydroxamate derivatives were produced mainly under iron deficiency, and their productions were repressed under iron supplementation conditions. Perenniporia medulla-panis showed several cellular proteins in the range of 10-90 kDa. Some of them showed negative iron-regulation. Iron-supplemented medium also repressed both cell surface and extracellular Fe3+-reducing activities; however, the highest cell surface activity was detected at the initial growth phase, whereas extracellular activity increased throughout the incubation period. No significant production of chelators and extracellular Fe3+-reducing activity were observed within the initial growth phase, suggesting that the reduction of Fe3+ to Fe2+ is performed by ferrireductases.  相似文献   

15.
Effect of iron chelators on the transferrin receptor in K562 cells   总被引:16,自引:0,他引:16  
Delivery of iron to K562 cells by diferric transferrin involves a cycle of binding to surface receptors, internalization into an acidic compartment, transfer of iron to ferritin, and release of apotransferrin from the cell. To evaluate potential feedback effects of iron on this system, we exposed cells to iron chelators and monitored the activity of the transferrin receptor. In the present study, we found that chelation of extracellular iron by the hydrophilic chelators desferrioxamine B, diethylenetriaminepentaacetic acid, or apolactoferrin enhanced the release from the cells of previously internalized 125I-transferrin. Presaturation of these compounds with iron blocked this effect. These chelators did not affect the uptake of iron from transferrin. In contrast, the hydrophobic chelator 2,2-bipyridine, which partitions into cell membranes, completely blocked iron uptake by chelating the iron during its transfer across the membrane. The 2,2-bipyridine did not, however, enhance the release of 125I-transferrin from the cells, indicating that extracellular iron chelation is the key to this effect. Desferrioxamine, unlike the other hydrophilic chelators, can enter the cell and chelate an intracellular pool of iron. This produced a parallel increase in surface and intracellular transferrin receptors, reaching 2-fold at 24 h and 3-fold at 48 h. This increase in receptor number required ongoing protein synthesis and could be blocked by cycloheximide. Diethylenetriaminepentaacetic acid or desferrioxamine presaturated with iron did not induce new transferrin receptors. The new receptors were functionally active and produced an increase in 59Fe uptake from 59Fe-transferrin. We conclude that the transferrin receptor in the K562 cell is regulated in part by chelatable iron: chelation of extracellular iron enhances the release of apotransferrin from the cell, while chelation of an intracellular iron pool results in the biosynthesis of new receptors.  相似文献   

16.
Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma), non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts) and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1) promote the redox cycling of iron; (2) bind and mobilize iron from labile intracellular pools; and (3) prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents.  相似文献   

17.
The uptake of iron from transferrin by isolated rat hepatocytes and rat reticulocytes has been compared. The results show the following. 1) Reticulocytes and hepatocytes express plasma membrane NADH:ferricyanide oxidoreductase activity. The activity, expressed per 10(6) cells, is approximately 60-fold higher in the hepatocyte than in the reticulocyte. 2) Hepatocyte plasma membrane NADH:ferricyanide oxidoreductase activity and uptake of iron from transferrin are stimulated by low oxygen concentration and inhibited by iodoacetate. In reticulocytes, similar changes are seen in NADH:ferricyanide oxidoreductase activity, but not on iron uptake. 3) Ferricyanide inhibits the uptake of iron from transferrin by hepatocytes, but has no effect on iron uptake by reticulocytes. 4) Perturbants of endocytosis and endosomal acidification have no inhibitory effect on hepatocyte iron uptake, but inhibit reticulocyte iron uptake. 5) Hydrophilic iron chelators effectively inhibit hepatocyte iron uptake, but have no effect on reticulocyte iron uptake. Hydrophobic iron chelators generally inhibit both hepatocyte and reticulocyte iron uptake. 6) Divalent metal cations with ionic radii similar to or less than the ferrous iron ion are effective inhibitors of hepatocyte iron uptake with no effect on reticulocyte iron uptake. The results are compatible with hepatocyte uptake of iron from transferrin by a reductive process at the cell surface and reticulocyte iron uptake by receptor-mediated endocytosis.  相似文献   

18.
Iron accumulation has been suggested to contribute to an increase of the susceptibility to mycobacterial infections. In this study we tested the effect of an array of iron chelating ligands of the 3-hydroxy-4-pyridinone family, in the intramacrophagic growth of Mycobacterium avium. We found that bidentate chelators, namely N-alkyl-3-hydroxy-4-pyridinones and N-aryl-3-hydroxy-4-pyridinones, did not affect the growth of M. avium inside mouse macrophages. In the case of the hexadentate chelators, those synthesized using an alkylamine (CP262) or a benzene ring (CP252) to link the three bidentate units, did not have an inhibitory effect on intramacrophagic growth of M. avium while those synthesized from a tripodal structure to anchor the bidentate units were capable of inhibiting the intramacrophagic growth of M. avium. The molecule we designated CP777 had the strongest inhibitory activity. The growth-reducing activity of CP777 was abrogated when this molecule was saturated with iron. These results confirm that iron deprivation, by the use of iron chelating compounds, restricts M. avium growth and that new iron chelators offer an approach to controlling mycobacterial infections.  相似文献   

19.
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, orally-active tridentate iron chelator providing both effective protection against various types of oxidative stress-induced cellular injury and anticancer action. However, the major limitation of SIH is represented by its labile hydrazone bond that makes it prone to plasma hydrolysis. Recently, nine new SIH analogues derived from aromatic ketones with improved hydrolytic stability were developed. Here we analyzed their antiproliferative potential in MCF-7 breast adenocarcinoma and HL-60 promyelocytic leukemia cell lines. Seven of the tested substances showed greater selectivity than the parent agent SIH towards the latter cancer cell lines compared to non-cancerous H9c2 cardiomyoblast-derived cells. The tested chelators induced a dose-dependent dissipation of the inner mitochondrial membrane potential, an induction of apoptosis as evidenced by Annexin V positivity or significant increases of activities of caspases 3, 7, 8 and 9 and cell cycle arrest. With the exception of nitro group-bearing NHAPI, the studies of iron complexes of the chelators confirmed the crucial role of iron in the mechanism of their antiproliferative action. Finally, all the assayed chelators inhibited the oxidation of ascorbate by iron ions indicating lack of redox activity of the chelator-iron complexes. In conclusion, this study identified several important design criteria for improvement of the antiproliferative selectivity of the aroylhydrazone iron chelators. Several of the novel compounds--in particular the ethylketone-derived HPPI, NHAPI and acetyl-substituted A2,4DHAPI--merit deeper investigation as promising potent and selective anticancer agents.  相似文献   

20.
Ataxia-telangiectasia (A-T) is characterized by ataxia, genomic instability, and increased cancer incidence. Previously, iron chelator concentrations which suppressed normal cell colony formation increased A-T cell colony formation. Similarly, iron chelators preferentially increased A-T cell colony formation following peroxide exposure compared to normal cells. Last, A-T cells exhibited increased short-term sensitivity to labile iron exposure compared to normal cells, an event corrected by recombinant ATM (rATM) expression. Since chromosomal damage is important in A-T pathology and iron chelators exert beneficial effects on A-T cells, we hypothesized that iron chelators would reduce A-T cell chromosomal breaks. We treated A-T, normal, and A-T cells expressing rATM with labile iron, iron chelators, antioxidants, and t-butyl hydroperoxide, and examined chromosomal breaks and ATM activation. Additionally, the effect of ATM-deficiency on transferrin receptor (TfR) expression and TfR activity blockage in A-T and syngeneic A-T cells expressing rATM was examined. We report that (1) iron chelators and iron-free media reduce spontaneous and t-butyl hydroperoxide-induced chromosomal breaks in A-T, but not normal, or A-T cells expressing rATM; (2) labile iron exposure induces A-T cell chromosomal breaks, an event lessened with rATM expression; (3) desferal, labile iron, and copper activate ATM; (4) A-T cell TfR expression is lowered with rATM expression and (5) blocking TfR activity with anti-TfR antibodies increases A-T cell colony formation, while lowering chromosomal breaks. ATM therefore functions in iron responses and the maintenance of genomic stability following labile iron exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号